Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Bayesian Optimization, Roman Garnett


Варианты приобретения
Цена: 7445.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: Есть  Склад Америка: Есть  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября

Добавить в корзину
в Мои желания

Автор: Roman Garnett
Название:  Bayesian Optimization
ISBN: 9781108425780
Издательство: Cambridge Academ
Классификация:

ISBN-10: 110842578X
Обложка/Формат: Hardback
Страницы: 358
Вес: 1.03 кг.
Дата издания: 09.02.2023
Язык: English
Иллюстрации: Worked examples or exercises
Размер: 177 x 252 x 27
Ключевые слова: Machine learning,Signal processing, COMPUTERS / Artificial Intelligence / Computer Vision & Pattern Recognition
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: Bayesian optimization is a methodology for optimizing expensive objective functions that has proven success in the sciences, engineering, and beyond. This timely text provides a self-contained and comprehensive introduction to the subject, starting from scratch and carefully developing all the key ideas along the way. This bottom-up approach illuminates unifying themes in the design of Bayesian optimization algorithms and builds a solid theoretical foundation for approaching novel situations. The core of the book is divided into three main parts, covering theoretical and practical aspects of Gaussian process modeling, the Bayesian approach to sequential decision making, and the realization and computation of practical and effective optimization policies. Following this foundational material, the book provides an overview of theoretical convergence results, a survey of notable extensions, a comprehensive history of Bayesian optimization, and an extensive annotated bibliography of applications.


Linear algebra and optimization with applications to machine learning - volume i: linear algebra for computer vision, robotics, and machine learning

Автор: Gallier, Jean H (univ Of Pennsylvania, Usa) Quaintance, Jocelyn (univ Of Pennsylvania, Usa)
Название: Linear algebra and optimization with applications to machine learning - volume i: linear algebra for computer vision, robotics, and machine learning
ISBN: 9811207712 ISBN-13(EAN): 9789811207716
Издательство: World Scientific Publishing
Рейтинг:
Цена: 14256.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

This book provides the mathematical fundamentals of linear algebra to practicers in computer vision, machine learning, robotics, applied mathematics, and electrical engineering. By only assuming a knowledge of calculus, the authors develop, in a rigorous yet down to earth manner, the mathematical theory behind concepts such as: vectors spaces, bases, linear maps, duality, Hermitian spaces, the spectral theorems, SVD, and the primary decomposition theorem. At all times, pertinent real-world applications are provided. This book includes the mathematical explanations for the tools used which we believe that is adequate for computer scientists, engineers and mathematicians who really want to do serious research and make significant contributions in their respective fields.

Deep Learning Techniques and Optimization Strategies in Big Data Analytics

Автор: J. Joshua Thomas, Pinar Karagoz, B. Bazeer Ahamed, Pandian Vasant
Название: Deep Learning Techniques and Optimization Strategies in Big Data Analytics
ISBN: 179981193X ISBN-13(EAN): 9781799811930
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 27027.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there's a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.

Logistics Management and Optimization through Hybrid Artificial Intelligence Systems

Автор: Carlos Alberto Ochoa Ortiz Zezzatti, Camelia Chira, Arturo Hernandez, Miguel Basurto
Название: Logistics Management and Optimization through Hybrid Artificial Intelligence Systems
ISBN: 146660297X ISBN-13(EAN): 9781466602977
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 28413.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Logistics Management and Optimization through Hybrid Artificial Intelligence Systems offers the latest research within the field of HAIS, surveying the broad topics and collecting case studies, future directions, and cutting edge analyses. Using biologically inspired algorithms such as ant colony optimization and particle swarm optimization, this text includes solutions and heuristics for practitioners and academics alike, offering a vital resource for staying abreast in this ever-burgeoning field.

Bayesian Optimization with Application to Computer Experiments

Автор: Pourmohamad Tony, Lee Herbert
Название: Bayesian Optimization with Application to Computer Experiments
ISBN: 3030824578 ISBN-13(EAN): 9783030824570
Издательство: Springer
Цена: 9083.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book introduces readers to Bayesian optimization, highlighting advances in the field and showcasing its successful applications to computer experiments.

Bayesian Optimization and Data Science

Автор: Francesco Archetti; Antonio Candelieri
Название: Bayesian Optimization and Data Science
ISBN: 3030244938 ISBN-13(EAN): 9783030244934
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This volume brings together the main results in the field of Bayesian Optimization (BO), focusing on the last ten years and showing how, on the basic framework, new methods have been specialized to solve emerging problems from machine learning, artificial intelligence, and system optimization. It also analyzes the software resources available for BO and a few selected application areas. Some areas for which new results are shown include constrained optimization, safe optimization, and applied mathematics, specifically BO's use in solving difficult nonlinear mixed integer problems. The book will help bring readers to a full understanding of the basic Bayesian Optimization framework and gain an appreciation of its potential for emerging application areas. It will be of particular interest to the data science, computer science, optimization, and engineering communities.

Bandit Algorithms

Автор: Tor Lattimore, Csaba Szepesvari
Название: Bandit Algorithms
ISBN: 1108486827 ISBN-13(EAN): 9781108486828
Издательство: Cambridge Academ
Рейтинг:
Цена: 6970.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Decision-making in the face of uncertainty is a challenge in machine learning, and the multi-armed bandit model is a common framework to address it. This comprehensive introduction is an excellent reference for established researchers and a resource for graduate students interested in exploring stochastic, adversarial and Bayesian frameworks.

Algorithms for Optimization

Автор: Kochenderfer Mykel J., Wheeler Tim A.
Название: Algorithms for Optimization
ISBN: 0262039427 ISBN-13(EAN): 9780262039420
Издательство: MIT Press
Рейтинг:
Цена: 14390.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems.

This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language.

Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.

Beyond the Worst-Case Analysis of Algorithms

Автор: Tim Roughgarden
Название: Beyond the Worst-Case Analysis of Algorithms
ISBN: 1108494315 ISBN-13(EAN): 9781108494311
Издательство: Cambridge Academ
Рейтинг:
Цена: 9187.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Understanding when and why algorithms work is a fundamental challenge. For problems ranging from clustering to linear programming to neural networks there are significant gaps between empirical performance and prediction based on traditional worst-case analysis. The book introduces exciting new methods for assessing algorithm performance.

Optimization in Machine Learning and Applications

Автор: Anand J. Kulkarni; Suresh Chandra Satapathy
Название: Optimization in Machine Learning and Applications
ISBN: 981150993X ISBN-13(EAN): 9789811509933
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book discusses one of the major applications of artificial intelligence: the use of machine learning to extract useful information from multimodal data. It discusses the optimization methods that help minimize the error in developing patterns and classifications, which further helps improve prediction and decision-making.

Handbook Of Machine Learning - Volume 2: Optimization And Decision Making

Автор: Marwala Tshilidzi, Leke Collins Achepsah
Название: Handbook Of Machine Learning - Volume 2: Optimization And Decision Making
ISBN: 9811205663 ISBN-13(EAN): 9789811205668
Издательство: World Scientific Publishing
Рейтинг:
Цена: 19008.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Building on Handbook of Machine Learning - Volume 1: Foundation of Artificial Intelligence, this volume on Optimization and Decision Making covers a range of algorithms and their applications. Like the first volume, it provides a starting point for machine learning enthusiasts as a comprehensive guide on classical optimization methods. It also provides an in-depth overview on how artificial intelligence can be used to define, disprove or validate economic modeling and decision making concepts.

First-Order and Stochastic Optimization Methods for Machine Learning

Автор: Lan Guanghui
Название: First-Order and Stochastic Optimization Methods for Machine Learning
ISBN: 3030395707 ISBN-13(EAN): 9783030395704
Издательство: Springer
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms.

Convex Optimization: Algorithms and Complexity

Автор: Sebastian Bubeck.
Название: Convex Optimization: Algorithms and Complexity
ISBN: 1601988605 ISBN-13(EAN): 9781601988607
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 12613.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Presents the main complexity theorems in convex optimization and their corresponding algorithms. The book begins with the fundamental theory of black-box optimization and proceeds to guide the reader through recent advances in structural optimization and stochastic optimization.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия