Data Mining and Machine Learning in High-Performance Sport, Muazu Musa
Автор: Strang Gilbert Название: Linear Algebra and Learning from Data ISBN: 0692196382 ISBN-13(EAN): 9780692196380 Издательство: Cambridge Academ Рейтинг: Цена: 9978.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.
Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman Название: The Elements of Statistical Learning ISBN: 0387848576 ISBN-13(EAN): 9780387848570 Издательство: Springer Рейтинг: Цена: 11528.00 р. Наличие на складе: Заказано в издательстве.
Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.
Автор: Leskovec Jure Название: Mining of Massive Datasets ISBN: 1108476341 ISBN-13(EAN): 9781108476348 Издательство: Cambridge Academ Рейтинг: Цена: 10771.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Essential reading for students and practitioners, this book focuses on practical algorithms used to solve key problems in data mining, with exercises suitable for students from the advanced undergraduate level and beyond. This third edition includes new and extended coverage on decision trees, deep learning, and mining social-network graphs.
Автор: Rino Micheloni, Cristian Zambelli Название: Machine Learning and Non-volatile Memories ISBN: 3031038401 ISBN-13(EAN): 9783031038402 Издательство: Springer Рейтинг: Цена: 20962.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents the basics of both NAND flash storage and machine learning, detailing the storage problems the latter can help to solve. At a first sight, machine learning and non-volatile memories seem very far away from each other. Machine learning implies mathematics, algorithms and a lot of computation; non-volatile memories are solid-state devices used to store information, having the amazing capability of retaining the information even without power supply.
This book will help the reader understand how these two worlds can work together, bringing a lot of value to each other. In particular, the book covers two main fields of application: analog neural networks (NNs) and solid-state drives (SSDs). After reviewing the basics of machine learning in Chapter 1, Chapter 2 shows how neural networks can mimic the human brain; to accomplish this result, neural networks have to perform a specific computation called vector-by-matrix (VbM) multiplication, which is particularly power hungry.
In the digital domain, VbM is implemented by means of logic gates which dictate both the area occupation and the power consumption; the combination of the two poses serious challenges to the hardware scalability, thus limiting the size of the neural network itself, especially in terms of the number of processable inputs and outputs. Non-volatile memories (phase change memories in Chapter 3, resistive memories in Chapter 4, and 3D flash memories in Chapter 5 and Chapter 6) enable the analog implementation of the VbM (also called "neuromorphic architecture"), which can easily beat the equivalent digital implementation in terms of both speed and energy consumption. SSDs and flash memories are strictly coupled together; as 3D flash scales, there is a significant amount of work that has to be done in order to optimize the overall performances of SSDs.
Machine learning has emerged as a viable solution in many stages of this process. After introducing the main flash reliability issues, Chapter 7 shows both supervised and un-supervised machine learning techniques that can be applied to NAND. In addition, Chapter 7 deals with algorithms and techniques for a pro-active reliability management of SSDs.
Last but not least, the last section of Chapter 7 discusses the next challenge for machine learning in the context of the so-called computational storage. No doubt that machine learning and non-volatile memories can help each other, but we are just at the beginning of the journey; this book helps researchers understand the basics of each field by providing real application examples, hopefully, providing a good starting point for the next level of development.
Название: High Performance Programming for Soft Computing ISBN: 146658601X ISBN-13(EAN): 9781466586017 Издательство: Taylor&Francis Рейтинг: Цена: 22968.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book examines the present and future of soft computer techniques. It explains how to use the latest technological tools, such as multicore processors and graphics processing units, to implement highly efficient intelligent system methods using a general purpose computer.
Автор: Brij B. Gupta, Quan Z. Sheng Название: Machine Learning for Computer and Cyber Security ISBN: 1138587303 ISBN-13(EAN): 9781138587304 Издательство: Taylor&Francis Рейтинг: Цена: 26796.00 р. Наличие на складе: Нет в наличии.
Описание: This comprehensive book offers valuable insights while using a wealth of examples and illustrations to effectively demonstrate the principles, algorithms, challenges and applications of machine learning and data mining for computer and cyber security.
Автор: Charu C. Aggarwal Название: Machine Learning for Text ISBN: 3030088073 ISBN-13(EAN): 9783030088071 Издательство: Springer Рейтинг: Цена: 6986.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Text analytics is a field that lies on the interface of information retrieval,machine learning, and natural language processing, and this textbook carefully covers a coherently organized framework drawn from these intersecting topics. The chapters of this textbook is organized into three categories:- Basic algorithms: Chapters 1 through 7 discuss the classical algorithms for machine learning from text such as preprocessing, similarity computation, topic modeling, matrix factorization, clustering, classification, regression, and ensemble analysis.- Domain-sensitive mining: Chapters 8 and 9 discuss the learning methods from text when combined with different domains such as multimedia and the Web. The problem of information retrieval and Web search is also discussed in the context of its relationship with ranking and machine learning methods. - Sequence-centric mining: Chapters 10 through 14 discuss various sequence-centric and natural language applications, such as feature engineering, neural language models, deep learning, text summarization, information extraction, opinion mining, text segmentation, and event detection. This textbook covers machine learning topics for text in detail. Since the coverage is extensive,multiple courses can be offered from the same book, depending on course level. Even though the presentation is text-centric, Chapters 3 to 7 cover machine learning algorithms that are often used indomains beyond text data. Therefore, the book can be used to offer courses not just in text analytics but also from the broader perspective of machine learning (with text as a backdrop). This textbook targets graduate students in computer science, as well as researchers, professors, and industrial practitioners working in these related fields. This textbook is accompanied with a solution manual for classroom teaching.
Автор: Pablo Duboue Название: The Art of Feature Engineering: Essentials for Machine Learning ISBN: 1108709389 ISBN-13(EAN): 9781108709385 Издательство: Cambridge Academ Рейтинг: Цена: 6970.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This is a guide for data scientists who want to use feature engineering to improve the performance of their machine learning solutions. The book provides a unified view of the field, beginning with basic concepts and techniques, followed by a cross-domain approach to advanced topics, like texts and images, with hands-on case studies.
Автор: Pedro Larran?aga; Alberto Ogbechie Название: Industrial Applications of Machine Learning ISBN: 0367656876 ISBN-13(EAN): 9780367656874 Издательство: Taylor&Francis Рейтинг: Цена: 7195.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book shows how machine learning can be applied to address real-world problems in the fourth industrial revolution and provides the required knowledge and tools to empower readers to build their own solutions based on theory and practice. The book introduces the fourth industrial revolution and its current impact on organizations and society
Take a comprehensive and step-by-step approach to understanding machine learning
Key Features
Discover how to apply the scikit-learn uniform API in all types of machine learning models
Understand the difference between supervised and unsupervised learning models
Reinforce your understanding of machine learning concepts by working on real-world examples
Book Description
Machine learning algorithms are an integral part of almost all modern applications. To make the learning process faster and more accurate, you need a tool flexible and powerful enough to help you build machine learning algorithms quickly and easily. With The Machine Learning Workshop, you'll master the scikit-learn library and become proficient in developing clever machine learning algorithms.
The Machine Learning Workshop begins by demonstrating how unsupervised and supervised learning algorithms work by analyzing a real-world dataset of wholesale customers. Once you've got to grips with the basics, you'll develop an artificial neural network using scikit-learn and then improve its performance by fine-tuning hyperparameters. Towards the end of the workshop, you'll study the dataset of a bank's marketing activities and build machine learning models that can list clients who are likely to subscribe to a term deposit. You'll also learn how to compare these models and select the optimal one.
By the end of The Machine Learning Workshop, you'll not only have learned the difference between supervised and unsupervised models and their applications in the real world, but you'll also have developed the skills required to get started with programming your very own machine learning algorithms.
What you will learn
Understand how to select an algorithm that best fits your dataset and desired outcome
Explore popular real-world algorithms such as K-means, Mean-Shift, and DBSCAN
Discover different approaches to solve machine learning classification problems
Develop neural network structures using the scikit-learn package
Use the NN algorithm to create models for predicting future outcomes
Perform error analysis to improve your model's performance
Who this book is for
The Machine Learning Workshop is perfect for machine learning beginners. You will need Python programming experience, though no prior knowledge of scikit-learn and machine learning is necessary.
Are you thinking that as much as we want to look for logical frameworks for intelligence, there is no certainty or scientific proof that intelligence is as structured as we believe it to be?
As in the evolutionary process, where chaos and order wisely coexist, I see a research gap related to our brain and mind, typically related to focusing on models based solely on order.
But if we are researching Artificial Intelligence, why are we so attached to the order and models that are supposed to be those of our brain?
Or, what binds us so much to what we see only, without opening spaces to what we don't see, if only to consider them small pieces of chaos?
In this openness and vision, when it comes to intelligence, I propose a new concept: that of unstructured intelligence, which I will try to explain in this book.
In this book, you will learn:
Automatic Learning
Machine Learning Paradigms
Inductive Learning
Induction Of Decision Trees
The relevance of attributes
Algorithms
Cluster
And Much more...
I think one of the main reasons for AI's long winter was that we went deep into it, creating architectures focused on existing paradigms, with little investment in new technologies and standards, such as machine learning itself.
But are we aren't repeating the same mistake in this new wave of AI?
If so, I consider the main mistake too much focus on artificial neural network architectures, as if this was the solution to solving complex learning problems in the human pattern or even the main door to generic artificial intelligence with semantic analysis capabilities.
And a possible solution to avoid the same history of past failure, perhaps, is to tackle high complexity real-world learning problems collectively and collaboratively, such as creating AI systems that can teach them to learn for themselves, like us humans.
So the architecture that seems to be the most logical for such problems is precisely the hybrid, where we have the most varied types of learning. In fact, before we are born, we are already learning in a hybrid way, with labeled and unlabeled data, by its very nature, and all its mechanisms of evolution.
You may think that you don't remember any important labeled data when you were a baby or child, but your mind and brain did a swell job to solve the puzzles that required some labeling to move on, as unsupervised learning systems follow.
So we can think of a similar machine architecture where the basis for all inferences is supervised learning, but capable of labeling any data that is not done by humans or other machines. And even criticize existing labels.
We are actually talking about machine learning - unsupervised - to generate labels for machine learning.
And creativity, in my view, is one of the essential links to evolve in understanding and formalizing new machine learning models.
Do you really want to easily learn and understand Machine Learning?
If so, get started today: scroll to the top, and click "BUY NOW"
Understand the key aspects and challenges of machine learning interpretability, learn how to overcome them with interpretation methods, and leverage them to build fairer, safer, and more reliable models
Key Features:
Learn how to extract easy-to-understand insights from any machine learning model
Become well-versed with interpretability techniques to build fairer, safer, and more reliable models
Mitigate risks in AI systems before they have broader implications by learning how to debug black-box models
Book Description:
Do you want to understand your models and mitigate risks associated with poor predictions using machine learning (ML) interpretation? Interpretable Machine Learning with Python can help you work effectively with ML models.
The first section of the book is a beginner's guide to interpretability, covering its relevance in business and exploring its key aspects and challenges. You'll focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. The second section will get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, the book also helps the reader to interpret model outcomes using examples. In the third section, you'll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you'll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining.
By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning.
What You Will Learn:
Recognize the importance of interpretability in business
Study models that are intrinsically interpretable such as linear models, decision trees, and Na ve Bayes
Become well-versed in interpreting models with model-agnostic methods
Visualize how an image classifier works and what it learns
Understand how to mitigate the influence of bias in datasets
Discover how to make models more reliable with adversarial robustness
Use monotonic constraints to make fairer and safer models
Who this book is for:
This book is for data scientists, machine learning developers, and data stewards who have an increasingly critical responsibility to explain how the AI systems they develop work, their impact on decision making, and how they identify and manage bias. Working knowledge of machine learning and the Python programming language is expected.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru