Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Data Mining and Machine Learning in High-Performance Sport, Muazu Musa


Варианты приобретения
Цена: 6986.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-09-29
Ориентировочная дата поставки: начало Ноября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Muazu Musa
Название:  Data Mining and Machine Learning in High-Performance Sport
ISBN: 9789811970481
Издательство: Springer
Классификация:




ISBN-10: 9811970483
Обложка/Формат: Soft cover
Страницы: 53
Вес: 0.13 кг.
Дата издания: 20.11.2022
Серия: SpringerBriefs in Applied Sciences and Technology
Язык: English
Издание: 1st ed. 2022
Иллюстрации: 12 illustrations, color; 1 illustrations, black and white; xiii, 53 p. 13 illus., 12 illus. in color.
Размер: 235 x 155
Читательская аудитория: Professional & vocational
Основная тема: Engineering
Подзаголовок: Performance analysis of on-field and video assistant referees in european soccer leagues
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book explores the application of data mining and machine learning techniques in studying the activity pattern, decision-making skills, misconducts, and actions resulting in the intervention of VAR in European soccer leagues referees. The game of soccer at the elite level is characterised by intense competitions, a high level of intensity, technical, and tactical skills coupled with a long duration of play. Referees are required to officiate the game and deliver correct and indisputable decisions throughout the duration of play. The increase in the spatial and temporal task demands of the game necessitates that the referees must respond and cope with the physiological and psychological loads inherent in the game. The referees are also required to deliver an accurate decision and uphold the rules and regulations of the game during a match. These demands and attributes make the work of referees highly complex. The increasing pace and complexity of the game resulted in the introduction of the Video Assistant Referee (VAR) to assist and improve the decision-making of on-field referees. Despite the integration of VAR into the current refereeing system, the performances of the referees are yet to be error-free. Machine learning coupled with data mining techniques has shown to be vital in providing insights from a large dataset which could be used to draw important inferences that can aid decision-making for diagnostics purposes and overall performance improvement. A total of 6232 matches from 5 consecutive seasons officiated across the English Premier League, Spanish LaLiga, Italian Serie A as well as the German Bundesliga was studied. It is envisioned that the findings in this book could be useful in recognising the activity pattern of top-class referees, that is non-trivial for the stakeholders in devising strategies to further enhance the performances of referees as well as empower talent identification experts with pertinent information for mapping out future high-performance referees.
Дополнительное описание: Current Trend of Analysis in High-Performance Sport, and the Recent Updates in Data Mining and Machine Learning Application in Sports.- Pattern Recognition of Misconducts Offences and Bookings of Top-European Soccer Leagues Referees.- Tactical and Miscond



Linear Algebra and Learning from Data

Автор: Strang Gilbert
Название: Linear Algebra and Learning from Data
ISBN: 0692196382 ISBN-13(EAN): 9780692196380
Издательство: Cambridge Academ
Рейтинг:
Цена: 9978.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.

The Elements of Statistical Learning

Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman
Название: The Elements of Statistical Learning
ISBN: 0387848576 ISBN-13(EAN): 9780387848570
Издательство: Springer
Рейтинг:
Цена: 11528.00 р.
Наличие на складе: Заказано в издательстве.

Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.

Mining of Massive Datasets

Автор: Leskovec Jure
Название: Mining of Massive Datasets
ISBN: 1108476341 ISBN-13(EAN): 9781108476348
Издательство: Cambridge Academ
Рейтинг:
Цена: 10771.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Essential reading for students and practitioners, this book focuses on practical algorithms used to solve key problems in data mining, with exercises suitable for students from the advanced undergraduate level and beyond. This third edition includes new and extended coverage on decision trees, deep learning, and mining social-network graphs.

Machine Learning and Non-volatile Memories

Автор: Rino Micheloni, Cristian Zambelli
Название: Machine Learning and Non-volatile Memories
ISBN: 3031038401 ISBN-13(EAN): 9783031038402
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents the basics of both NAND flash storage and machine learning, detailing the storage problems the latter can help to solve. At a first sight, machine learning and non-volatile memories seem very far away from each other. Machine learning implies mathematics, algorithms and a lot of computation; non-volatile memories are solid-state devices used to store information, having the amazing capability of retaining the information even without power supply.

This book will help the reader understand how these two worlds can work together, bringing a lot of value to each other. In particular, the book covers two main fields of application: analog neural networks (NNs) and solid-state drives (SSDs). After reviewing the basics of machine learning in Chapter 1, Chapter 2 shows how neural networks can mimic the human brain; to accomplish this result, neural networks have to perform a specific computation called vector-by-matrix (VbM) multiplication, which is particularly power hungry.

In the digital domain, VbM is implemented by means of logic gates which dictate both the area occupation and the power consumption; the combination of the two poses serious challenges to the hardware scalability, thus limiting the size of the neural network itself, especially in terms of the number of processable inputs and outputs. Non-volatile memories (phase change memories in Chapter 3, resistive memories in Chapter 4, and 3D flash memories in Chapter 5 and Chapter 6) enable the analog implementation of the VbM (also called "neuromorphic architecture"), which can easily beat the equivalent digital implementation in terms of both speed and energy consumption. SSDs and flash memories are strictly coupled together; as 3D flash scales, there is a significant amount of work that has to be done in order to optimize the overall performances of SSDs.

Machine learning has emerged as a viable solution in many stages of this process. After introducing the main flash reliability issues, Chapter 7 shows both supervised and un-supervised machine learning techniques that can be applied to NAND. In addition, Chapter 7 deals with algorithms and techniques for a pro-active reliability management of SSDs.

Last but not least, the last section of Chapter 7 discusses the next challenge for machine learning in the context of the so-called computational storage. No doubt that machine learning and non-volatile memories can help each other, but we are just at the beginning of the journey; this book helps researchers understand the basics of each field by providing real application examples, hopefully, providing a good starting point for the next level of development.

High Performance Programming for Soft Computing

Название: High Performance Programming for Soft Computing
ISBN: 146658601X ISBN-13(EAN): 9781466586017
Издательство: Taylor&Francis
Рейтинг:
Цена: 22968.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book examines the present and future of soft computer techniques. It explains how to use the latest technological tools, such as multicore processors and graphics processing units, to implement highly efficient intelligent system methods using a general purpose computer.

Machine Learning for Computer and Cyber Security

Автор: Brij B. Gupta, Quan Z. Sheng
Название: Machine Learning for Computer and Cyber Security
ISBN: 1138587303 ISBN-13(EAN): 9781138587304
Издательство: Taylor&Francis
Рейтинг:
Цена: 26796.00 р.
Наличие на складе: Нет в наличии.

Описание: This comprehensive book offers valuable insights while using a wealth of examples and illustrations to effectively demonstrate the principles, algorithms, challenges and applications of machine learning and data mining for computer and cyber security.

Machine Learning for Text

Автор: Charu C. Aggarwal
Название: Machine Learning for Text
ISBN: 3030088073 ISBN-13(EAN): 9783030088071
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Text analytics is a field that lies on the interface of information retrieval,machine learning, and natural language processing, and this textbook carefully covers a coherently organized framework drawn from these intersecting topics. The chapters of this textbook is organized into three categories:- Basic algorithms: Chapters 1 through 7 discuss the classical algorithms for machine learning from text such as preprocessing, similarity computation, topic modeling, matrix factorization, clustering, classification, regression, and ensemble analysis.- Domain-sensitive mining: Chapters 8 and 9 discuss the learning methods from text when combined with different domains such as multimedia and the Web. The problem of information retrieval and Web search is also discussed in the context of its relationship with ranking and machine learning methods. - Sequence-centric mining: Chapters 10 through 14 discuss various sequence-centric and natural language applications, such as feature engineering, neural language models, deep learning, text summarization, information extraction, opinion mining, text segmentation, and event detection. This textbook covers machine learning topics for text in detail. Since the coverage is extensive,multiple courses can be offered from the same book, depending on course level. Even though the presentation is text-centric, Chapters 3 to 7 cover machine learning algorithms that are often used indomains beyond text data. Therefore, the book can be used to offer courses not just in text analytics but also from the broader perspective of machine learning (with text as a backdrop). This textbook targets graduate students in computer science, as well as researchers, professors, and industrial practitioners working in these related fields. This textbook is accompanied with a solution manual for classroom teaching.

The Art of Feature Engineering: Essentials for Machine Learning

Автор: Pablo Duboue
Название: The Art of Feature Engineering: Essentials for Machine Learning
ISBN: 1108709389 ISBN-13(EAN): 9781108709385
Издательство: Cambridge Academ
Рейтинг:
Цена: 6970.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This is a guide for data scientists who want to use feature engineering to improve the performance of their machine learning solutions. The book provides a unified view of the field, beginning with basic concepts and techniques, followed by a cross-domain approach to advanced topics, like texts and images, with hands-on case studies.

Industrial Applications of Machine Learning

Автор: Pedro Larran?aga; Alberto Ogbechie
Название: Industrial Applications of Machine Learning
ISBN: 0367656876 ISBN-13(EAN): 9780367656874
Издательство: Taylor&Francis
Рейтинг:
Цена: 7195.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book shows how machine learning can be applied to address real-world problems in the fourth industrial revolution and provides the required knowledge and tools to empower readers to build their own solutions based on theory and practice. The book introduces the fourth industrial revolution and its current impact on organizations and society

The Machine Learning Workshop - Second Edition: Get ready to develop your own high-performance machine learning algorithms with scikit-learn

Автор: Saleh Hyatt
Название: The Machine Learning Workshop - Second Edition: Get ready to develop your own high-performance machine learning algorithms with scikit-learn
ISBN: 1839219068 ISBN-13(EAN): 9781839219061
Издательство: Неизвестно
Рейтинг:
Цена: 7171.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Take a comprehensive and step-by-step approach to understanding machine learning

Key Features

  • Discover how to apply the scikit-learn uniform API in all types of machine learning models
  • Understand the difference between supervised and unsupervised learning models
  • Reinforce your understanding of machine learning concepts by working on real-world examples

Book Description

Machine learning algorithms are an integral part of almost all modern applications. To make the learning process faster and more accurate, you need a tool flexible and powerful enough to help you build machine learning algorithms quickly and easily. With The Machine Learning Workshop, you'll master the scikit-learn library and become proficient in developing clever machine learning algorithms.

The Machine Learning Workshop begins by demonstrating how unsupervised and supervised learning algorithms work by analyzing a real-world dataset of wholesale customers. Once you've got to grips with the basics, you'll develop an artificial neural network using scikit-learn and then improve its performance by fine-tuning hyperparameters. Towards the end of the workshop, you'll study the dataset of a bank's marketing activities and build machine learning models that can list clients who are likely to subscribe to a term deposit. You'll also learn how to compare these models and select the optimal one.

By the end of The Machine Learning Workshop, you'll not only have learned the difference between supervised and unsupervised models and their applications in the real world, but you'll also have developed the skills required to get started with programming your very own machine learning algorithms.

What you will learn

  • Understand how to select an algorithm that best fits your dataset and desired outcome
  • Explore popular real-world algorithms such as K-means, Mean-Shift, and DBSCAN
  • Discover different approaches to solve machine learning classification problems
  • Develop neural network structures using the scikit-learn package
  • Use the NN algorithm to create models for predicting future outcomes
  • Perform error analysis to improve your model's performance

Who this book is for

The Machine Learning Workshop is perfect for machine learning beginners. You will need Python programming experience, though no prior knowledge of scikit-learn and machine learning is necessary.

Machine Learning: The Ultimate Beginners Guide to Efficiently Learn and Understand Machine Learning, Artificial Neural Network and Data

Автор: Novikov Denny
Название: Machine Learning: The Ultimate Beginners Guide to Efficiently Learn and Understand Machine Learning, Artificial Neural Network and Data
ISBN: 1801132593 ISBN-13(EAN): 9781801132596
Издательство: Неизвестно
Рейтинг:
Цена: 2757.00 р.
Наличие на складе: Нет в наличии.

Описание:

Are you thinking that as much as we want to look for logical frameworks for intelligence, there is no certainty or scientific proof that intelligence is as structured as we believe it to be?


As in the evolutionary process, where chaos and order wisely coexist, I see a research gap related to our brain and mind, typically related to focusing on models based solely on order.


But if we are researching Artificial Intelligence, why are we so attached to the order and models that are supposed to be those of our brain?

Or, what binds us so much to what we see only, without opening spaces to what we don't see, if only to consider them small pieces of chaos?


In this openness and vision, when it comes to intelligence, I propose a new concept: that of unstructured intelligence, which I will try to explain in this book.


In this book, you will learn:


  • Automatic Learning
  • Machine Learning Paradigms
  • Inductive Learning
  • Induction Of Decision Trees
  • The relevance of attributes
  • Algorithms
  • Cluster
  • And Much more...


I think one of the main reasons for AI's long winter was that we went deep into it, creating architectures focused on existing paradigms, with little investment in new technologies and standards, such as machine learning itself.

But are we aren't repeating the same mistake in this new wave of AI?

If so, I consider the main mistake too much focus on artificial neural network architectures, as if this was the solution to solving complex learning problems in the human pattern or even the main door to generic artificial intelligence with semantic analysis capabilities.

And a possible solution to avoid the same history of past failure, perhaps, is to tackle high complexity real-world learning problems collectively and collaboratively, such as creating AI systems that can teach them to learn for themselves, like us humans.

So the architecture that seems to be the most logical for such problems is precisely the hybrid, where we have the most varied types of learning. In fact, before we are born, we are already learning in a hybrid way, with labeled and unlabeled data, by its very nature, and all its mechanisms of evolution.

You may think that you don't remember any important labeled data when you were a baby or child, but your mind and brain did a swell job to solve the puzzles that required some labeling to move on, as unsupervised learning systems follow.

So we can think of a similar machine architecture where the basis for all inferences is supervised learning, but capable of labeling any data that is not done by humans or other machines. And even criticize existing labels.

We are actually talking about machine learning - unsupervised - to generate labels for machine learning.

And creativity, in my view, is one of the essential links to evolve in understanding and formalizing new machine learning models.

Do you really want to easily learn and understand Machine Learning?


If so, get started today: scroll to the top, and click "BUY NOW"

Interpretable Machine Learning with Python: Learn to build interpretable high-performance models with hands-on real-world examples

Автор: Masнs Serg
Название: Interpretable Machine Learning with Python: Learn to build interpretable high-performance models with hands-on real-world examples
ISBN: 180020390X ISBN-13(EAN): 9781800203907
Издательство: Неизвестно
Рейтинг:
Цена: 10114.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Understand the key aspects and challenges of machine learning interpretability, learn how to overcome them with interpretation methods, and leverage them to build fairer, safer, and more reliable models


Key Features:

  • Learn how to extract easy-to-understand insights from any machine learning model
  • Become well-versed with interpretability techniques to build fairer, safer, and more reliable models
  • Mitigate risks in AI systems before they have broader implications by learning how to debug black-box models


Book Description:

Do you want to understand your models and mitigate risks associated with poor predictions using machine learning (ML) interpretation? Interpretable Machine Learning with Python can help you work effectively with ML models.


The first section of the book is a beginner's guide to interpretability, covering its relevance in business and exploring its key aspects and challenges. You'll focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. The second section will get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, the book also helps the reader to interpret model outcomes using examples. In the third section, you'll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you'll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining.


By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning.


What You Will Learn:

  • Recognize the importance of interpretability in business
  • Study models that are intrinsically interpretable such as linear models, decision trees, and Na ve Bayes
  • Become well-versed in interpreting models with model-agnostic methods
  • Visualize how an image classifier works and what it learns
  • Understand how to mitigate the influence of bias in datasets
  • Discover how to make models more reliable with adversarial robustness
  • Use monotonic constraints to make fairer and safer models


Who this book is for:

This book is for data scientists, machine learning developers, and data stewards who have an increasingly critical responsibility to explain how the AI systems they develop work, their impact on decision making, and how they identify and manage bias. Working knowledge of machine learning and the Python programming language is expected.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия