Автор: Kulikovskii, A.G. , Pogorelov, N.V. , Semenov, A Название: Mathematical Aspects of Numerical Solution of Hyperbolic Systems ISBN: 0367397730 ISBN-13(EAN): 9780367397739 Издательство: Taylor&Francis Цена: 9798.00 р. Наличие на складе: Есть у поставщикаПоставка под заказ. Описание:
This important new book sets forth a comprehensive description of various mathematical aspects of problems originating in numerical solution of hyperbolic systems of partial differential equations. The authors present the material in the context of the important mechanical applications of such systems, including the Euler equations of gas dynamics, magnetohydrodynamics (MHD), shallow water, and solid dynamics equations. This treatment provides-for the first time in book form-a collection of recipes for applying higher-order non-oscillatory shock-capturing schemes to MHD modelling of physical phenomena.
The authors also address a number of original nonclassical problems, such as shock wave propagation in rods and composite materials, ionization fronts in plasma, and electromagnetic shock waves in magnets. They show that if a small-scale, higher-order mathematical model results in oscillations of the discontinuity structure, the variety of admissible discontinuities can exhibit disperse behavior, including some with additional boundary conditions that do not follow from the hyperbolic conservation laws. Nonclassical problems are accompanied by a multiple nonuniqueness of solutions. The authors formulate several selection rules, which in some cases easily allow a correct, physically realizable choice. This work systematizes methods for overcoming the difficulties inherent in the solution of hyperbolic systems. Its unique focus on applications, both traditional and new, makes Mathematical Aspects of Numerical Solution of Hyperbolic Systems particularly valuable not only to those interested the development of numerical methods, but to physicists and engineers who strive to solve increasingly complicated nonlinear equations.
Автор: Kulikovskii, A.G. , Pogorelov, N.V. , Semenov, A Название: Mathematical Aspects of Numerical Solution of Hyperbolic Systems ISBN: 0367397730 ISBN-13(EAN): 9780367397739 Издательство: Taylor&Francis Рейтинг: Цена: 9798.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
This important new book sets forth a comprehensive description of various mathematical aspects of problems originating in numerical solution of hyperbolic systems of partial differential equations. The authors present the material in the context of the important mechanical applications of such systems, including the Euler equations of gas dynamics, magnetohydrodynamics (MHD), shallow water, and solid dynamics equations. This treatment provides-for the first time in book form-a collection of recipes for applying higher-order non-oscillatory shock-capturing schemes to MHD modelling of physical phenomena.
The authors also address a number of original nonclassical problems, such as shock wave propagation in rods and composite materials, ionization fronts in plasma, and electromagnetic shock waves in magnets. They show that if a small-scale, higher-order mathematical model results in oscillations of the discontinuity structure, the variety of admissible discontinuities can exhibit disperse behavior, including some with additional boundary conditions that do not follow from the hyperbolic conservation laws. Nonclassical problems are accompanied by a multiple nonuniqueness of solutions. The authors formulate several selection rules, which in some cases easily allow a correct, physically realizable choice. This work systematizes methods for overcoming the difficulties inherent in the solution of hyperbolic systems. Its unique focus on applications, both traditional and new, makes Mathematical Aspects of Numerical Solution of Hyperbolic Systems particularly valuable not only to those interested the development of numerical methods, but to physicists and engineers who strive to solve increasingly complicated nonlinear equations.
Автор: Mass Per Pettersson; Gianluca Iaccarino; Jan Nords Название: Polynomial Chaos Methods for Hyperbolic Partial Differential Equations ISBN: 3319107135 ISBN-13(EAN): 9783319107134 Издательство: Springer Рейтинг: Цена: 15672.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Polynomial Chaos Methods for Hyperbolic Partial Differential Equations
Описание: This book examines recent developments in the numerics of partial differential equations. It emphasizes methods of high order and applications in computational fluid dynamics.
Описание: Contains a collection of papers presented at a conference on nonlinear hyperbolic problems held in Taormina, Italy from 3-8 April, 1992. The papers deal with different mathematical techniques of relevant interest to current research in nonlinear wave propagation.
Автор: Wiggins, Stephen Название: Normally hyperbolic invariant manifolds in dynamical systems ISBN: 1461287340 ISBN-13(EAN): 9781461287346 Издательство: Springer Рейтинг: Цена: 11173.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: An important tool in these studies has been the theory of normally hyperbolic invariant manifolds and foliations of normally hyperbolic invariant manifolds.
Автор: D.V. Anosov; D.V. Anosov; G.G. Gould; S.K. Aranson Название: Dynamical Systems IX ISBN: 3642081681 ISBN-13(EAN): 9783642081682 Издательство: Springer Рейтинг: Цена: 19564.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume is devoted to the "hyperbolic theory" of dynamical systems (DS), that is, the theory of smooth DS`s with hyperbolic behaviour of the tra- jectories (generally speaking, not the individual trajectories, but trajectories filling out more or less "significant" subsets in the phase space.
Автор: D.V. Anosov; D.V. Anosov; G.G. Gould; S.K. Aranson Название: Dynamical Systems IX ISBN: 3540570438 ISBN-13(EAN): 9783540570431 Издательство: Springer Рейтинг: Цена: 19564.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Deals with smooth dynamical systems with hyperbolic behaviour of trajectories filling out "large subsets" of the phase space. This book begins with a discussion of the topological manifestations of uniform and total hyperbolicity: hyperbolic sets, Smale`s Axiom A, structurally stable systems, Anosov systems, and hyperbolic attractors of dimension.
Автор: P.C. Sinha; Yu.V. Egorov; Yu.V. Egorov; V.Ya. Ivri Название: Partial Differential Equations IV ISBN: 3642080995 ISBN-13(EAN): 9783642080999 Издательство: Springer Рейтинг: Цена: 19564.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: A two-part monograph covering recent research in an important field, previously scattered in numerous journals, including the latest results in the theory of mixed problems for hyperbolic operators. The book is hence of immense value to graduate students and researchers in partial differential equations and theoretical physics.
Описание: This book focuses on the spatio-temporal patterns generated by two classes of mathematical models (of hyperbolic and kinetic types) that have been increasingly used in the past several years to describe various biological and ecological communities. Here we combine an overview of various modelling approaches for collective behaviours displayed by individuals/cells/bacteria that interact locally and non-locally, with analytical and numerical mathematical techniques that can be used to investigate the spatio-temporal patterns produced by said individuals/cells/bacteria. Richly illustrated, the book offers a valuable guide for researchers new to the field, and is also suitable as a textbook for senior undergraduate or graduate students in mathematics or related disciplines.
PART 4. Hyperbolic Problems. David Iampietro, Frederic Daude, Pascal Galon, and Jean-Marc Herard, A Weighted Splitting Approach For Low-Mach Number Flows.-
Florence Hubert and Remi Tesson, Weno scheme for transport equation on unstructured grids with a DDFV approach.- M.J. Castro, J.M. Gallardo and A. Marquina, New types of Jacobian-free approximate Riemann solvers for hyperbolic systems.- Charles Demay, Christian Bourdarias, Benoıt de Laage de Meux, Stephane Gerbi and Jean-Marc Herard, A fractional step method to simulate mixed flows in pipes with a compressible two-layer model.- Theo Corot, A second order cell-centered scheme for Lagrangian hydrodynamics.- Clement Colas, Martin Ferrand, Jean-Marc Herard, Erwan Le Coupanec and Xavier Martin, An implicit integral formulation for the modeling of inviscid fluid flows in domains containing obstacles.- Christophe Chalons and Maxime Stauffert, A high-order Discontinuous Galerkin Lagrange Projection scheme for the barotropic Euler equations.- Christophe Chalons, Regis Duvigneau and Camilla Fiorini, Sensitivity analysis for the Euler equations in Lagrangian coordinates.- Jooyoung Hahn, Karol Mikula, Peter Frolkovic, and Branislav Basara, Semi-implicit level set method with inflow-based gradient in a polyhedron mesh.- Thierry Goudon, Julie Llobell and Sebastian Minjeaud, A staggered scheme for the Euler equations.- Christian Bourdarias, Stephane Gerbi and Ralph Lteif, A numerical scheme for the propagation of internal waves in an oceanographic model.- Hamza Boukili and Jean-Marc Herard, A splitting scheme for three-phase flow models.- M. J Castro, C. Escalante and T. Morales de Luna, Modelling and simulation of non-hydrostatic shallow flows.- Svetlana Tokareva and Eleuterio Toro, A flux splitting method for the Baer-Nunziato equations of compressible two-phase flow.- Mohamed Boubekeur and Fayssal Benkhaldoun and Mohammed Seaid, GPU accelerated finite volume methods for three-dimensional shallow water flows.- Ward Melis, Thomas Rey and Giovanni Samaey, Projective integration for nonlinear BGK kinetic equations.- Lei Zhang, Jean-Michel Ghidaglia and Anela Kumbaro, Asymptotic preserving property of a semi-implicit method.- Sebastien Boyaval, A Finite-Volume discretization of viscoelastic Saint-Venant equations for FENE-P fluids.- David Coulette, Emmanuel Franck, Philippe Helluy, Michel Mehrenberger, Laurent Navoret, Palindromic Discontinuous Galerkin Method.- M. Lukacova-Medvid'ova, J. Rosemeier, P. Spichtinger and B. Wiebe, IMEX finite volume methods for cloud simulation.- Raimund Burger and Ilja Kroker, Hybrid stochastic Galerkin finite volumes for the diffusively corrected Lighthill-Whitham-Richards traffic model.- Hamed Zakerzadeh, The RS-IMEX scheme for the rotating shallow water equations with the Coriolis force.- Emmanuel Audusse, Minh Hieu Do, Pascal Omnes, Yohan Penel, Analysis of Apparent Topography scheme for the linear wave equation with Coriolis force.- N. Aıssiouene, M-O. Bristeau, E. Godlewski, A. Mangeney, C. Pares and J. Sainte-Marie, Application of a combined finite element - finite volume method to a 2D non-hydrostatic shallow water problem.- Emanuela Abbate, Angelo Iollo and Gabriella Puppo, A relaxation scheme for the simulation of low Mach number flows.- Stefan Vater, Nicole Beisiegel and Jorn Behrens, Comparison of wetting and drying between a RKDG2 method and classical FV based second-order hydrostatic reconstruction.- Anja Jeschke, Stefan Vater and J]orn Behrens, A Discontinuous Galerkin Method for Non-Hydrostatic Shallow Water Flows.- Remi Abgrall and Paola Bacigaluppi, Design of a Second-Order Fully Explicit Residual Distribution Scheme for Compressible Multiphase Flows.- Martin Campos Pinto, An Unstructured Forward-Backward Lagrangian Scheme for Transport Problems.- Nicole Goutal, Minh-Hoang Le and Philippe Ung, A Godunov-type scheme for Shallow Water equations dedicated to simulations of overland flows on stepped slop
Автор: Alfio Quarteroni; B. Cockburn; C. Johnson; C.-W. S Название: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations ISBN: 3540649778 ISBN-13(EAN): 9783540649779 Издательство: Springer Рейтинг: Цена: 10754.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The most effective methodologies in the framework of finite elements, finite differences, finite volumes spectral methods and kinetic methods, are addressed, in particular high-order shock capturing techniques, discontinuous Galerkin methods, adaptive techniques based upon a-posteriori error analysis.
Автор: Heinrich Freist?hler; Gerald Warnecke Название: Hyperbolic Problems: Theory, Numerics, Applications ISBN: 3034895380 ISBN-13(EAN): 9783034895385 Издательство: Springer Рейтинг: Цена: 13974.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru