Statistical Testing Strategies in the Health Sciences, Vexler, Albert
Автор: Trevor Hastie; Robert Tibshirani; Jerome Friedman Название: The Elements of Statistical Learning ISBN: 0387848576 ISBN-13(EAN): 9780387848570 Издательство: Springer Рейтинг: Цена: 10480.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This major new edition features many topics not covered in the original, including graphical models, random forests, and ensemble methods. As before, it covers the conceptual framework for statistical data in our rapidly expanding computerized world.
Автор: James, Gareth Witten, Daniela Hastie, Trevor Tibsh Название: Introduction to statistical learning ISBN: 1071614177 ISBN-13(EAN): 9781071614174 Издательство: Springer Рейтинг: Цена: 8384.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more.
Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers.
An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
This Second Edition features new chapters on deep learning, survival analysis, and multiple testing, as well as expanded treatments of naive Bayes, generalized linear models, Bayesian additive regression trees, and matrix completion. R code has been updated throughout to ensure compatibility.
Автор: Bradley Efron , Trevor Hastie Название: Computer Age Statistical Inference, Student Edition ISBN: 1108823416 ISBN-13(EAN): 9781108823418 Издательство: Cambridge Academ Рейтинг: Цена: 5069.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Computing power has revolutionized the theory and practice of statistical inference. Now in paperback, and fortified with 130 class-tested exercises, this book explains modern statistical thinking from classical theories to state-of-the-art prediction algorithms. Anyone who applies statistical methods to data will value this landmark text.
Описание: This volume contains original and refereed contributions from the tenth AMCTM Conference (http://www.nviim.ru/AMCTM2014) held in St. Petersburg (Russia) in September 2014 on the theme of advanced mathematical and computational tools in metrology and testing.
Автор: He, Yulei Название: Multiple Imputation Analysis For Ob ISBN: 1498722067 ISBN-13(EAN): 9781498722063 Издательство: Taylor&Francis Рейтинг: Цена: 13779.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Multiple Imputation of Missing Data in Practice: Basic Theory and Analysis Strategies provides a comprehensive introduction to the multiple imputation approach to missing data problems that are often encountered in data analysis.
Описание: This text provides the reader with a general and widely-applicable problem solving strategy for use in quality improvement. It covers a variety of statistical and "non-statistical" problem-solving tools, and discusses techniques that are useful when problems are solved by groups or teams of people.
Описание: Clinical trials require strategic thinking and innovative methods since some traditional methods are not adequate for the 21st century.To solve these problems requires good methodological skills, but also an in-depth knowledge of the practical problems we are dealing with and a strategic vision of the pig picture.
Автор: Chang, Mark (AMAG Pharmaceuticals, Inc, Lexington, Massachusetts, USA) Balser, John Roach, Jim Bliss, Robin Название: Innovative Strategies, Statistical Solutions and Simulations for Modern Clinical Trials ISBN: 1032093501 ISBN-13(EAN): 9781032093505 Издательство: Taylor&Francis Рейтинг: Цена: 7501.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Clinical trials require strategic thinking and innovative methods since some traditional methods are not adequate for the 21st century.To solve these problems requires good methodological skills, but also an in-depth knowledge of the practical problems we are dealing with and a strategic vision of the pig picture.
Автор: Cosmatos, Dennis Название: Translational Medicine ISBN: 1584888725 ISBN-13(EAN): 9781584888727 Издательство: Taylor&Francis Рейтинг: Цена: 17609.00 р. Наличие на складе: Поставка под заказ.
Автор: Bradley Efron and Trevor Hastie Название: Computer Age Statistical Inference ISBN: 1107149894 ISBN-13(EAN): 9781107149892 Издательство: Cambridge Academ Рейтинг: Цена: 9029.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru