Featuring in-depth coverage of categorical and nonparametric statistics, this book provides a conceptual framework for choosing the most appropriate type of test in various research scenarios. Class tested at the University of Nevada, the book's clear explanations of the underlying assumptions, computer simulations, and Exploring the Concept boxes help reduce reader anxiety. Problems inspired by actual studies provide meaningful illustrations of the techniques. The underlying assumptions of each test and the factors that impact validity and statistical power are reviewed so readers can explain their assumptions and how tests work in future publications. Numerous examples from psychology, education, and other social sciences demonstrate varied applications of the material. Basic statistics and probability are reviewed for those who need a refresher. Mathematical derivations are placed in optional appendices for those interested in this detailed coverage.
Highlights include the following:
Unique coverage of categorical and nonparametric statistics better prepares readers to select the best technique for their particular research project; however, some chapters can be omitted entirely if preferred.
Step-by-step examples of each test help readers see how the material is applied in a variety of disciplines.
Although the book can be used with any program, examples of how to use the tests in SPSS and Excel foster conceptual understanding.
Exploring the Concept boxes integrated throughout prompt students to review key material and draw links between the concepts to deepen understanding.
Problems in each chapter help readers test their understanding of the material.
Emphasis on selecting tests that maximize power helps readers avoid "marginally" significant results.
Website (www.routledge.com/9781138787827) features datasets for the book's examples and problems, and for the instructor, PowerPoint slides, sample syllabi, answers to the even-numbered problems, and Excel data sets for lecture purposes.
Intended for individual or combined graduate or advanced undergraduate courses in categorical and nonparametric data analysis, cross-classified data analysis, advanced statistics and/or quantitative techniques taught in psychology, education, human development, sociology, political science, and other social and life sciences, the book also appeals to researchers in these disciplines. The nonparametric chapters can be deleted if preferred. Prerequisites include knowledge of t tests and ANOVA.
Автор: Liu, Xing Название: Categorical data analysis and multilevel modeling using r ISBN: 1544324901 ISBN-13(EAN): 9781544324906 Издательство: Sage Publications Рейтинг: Цена: 18058.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:
Categorical Data Analysis and Multilevel Modeling Using Rprovides a practical guide to regression techniques for analyzing binary, ordinal, nominal, and count response variables using the R software. Author Xing Liu offers a unified framework for both single-level and multilevel modeling of categorical and count response variables with both frequentist and Bayesian approaches. Each chapter demonstrates how to conduct the analysis using R, how to interpret the models, and how to present the results for publication. A companion website for this book contains datasets and R commands used in the book for students, and solutions for the end-of-chapter exercises on the instructor site.
Автор: Faghih, Nezameddin Bonyadi, Ebrahim Sarreshtehdari, Lida Название: Quality management and operations research ISBN: 0367744902 ISBN-13(EAN): 9780367744908 Издательство: Taylor&Francis Рейтинг: Цена: 11255.00 р. 16078.00-30% Наличие на складе: Есть (1 шт.) Описание: Offering a step-by-step approach for applying the Nonparametric Method with the Bayesian Approach to model complex relationships occurring in Reliability Engineering, Quality Management, and Operations Research, it also discusses survival and censored data, accelerated lifetime tests (issues in reliability data analysis), and R codes. This book uses the Nonparametric Bayesian approach in the fields of quality management and operations research. It presents a step-by-step approach for understanding and implementing these models, as well as includes R codes which can be used in any dataset. The book helps the readers to use statistical models in studying complex concepts and applying them to Operations Research, Industrial Engineering, Manufacturing Engineering, Computer Science, Quality and Reliability, Maintenance Planning and Operations Management.This book helps researchers, analysts, investigators, designers, producers, industrialists, entrepreneurs, and financial market decision makers, with finding the lifetime model of products, and for crucial decision-making in other markets.
Автор: Kolassa, John E. Название: An Introduction to nonparametric statistics ISBN: 0367194848 ISBN-13(EAN): 9780367194840 Издательство: Taylor&Francis Рейтинг: Цена: 14086.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book presents the theory and practice of non-parametric statistics, with an emphasis on motivating principals. The course is a combination of traditional rank based methods and more computationally-intensive topics like density estimation, kernel smoothers in regression, and robustness. The text is aimed at MS students.
Автор: Peter M?ller; Fernando Andres Quintana; Alejandro Название: Bayesian Nonparametric Data Analysis ISBN: 3319368427 ISBN-13(EAN): 9783319368429 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones.
Автор: Fr?d?ric Ferraty; Philippe Vieu Название: Nonparametric Functional Data Analysis ISBN: 1441921419 ISBN-13(EAN): 9781441921413 Издательство: Springer Рейтинг: Цена: 18167.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: At the same time it shows how functional data can be studied through parameter-free statistical ideas, and offers an original presentation of new nonparametric statistical methods for functional data analysis.
Автор: Pao-Liu Chow; Boris S. Mordukhovich; G. George Yin Название: Topics in Stochastic Analysis and Nonparametric Estimation ISBN: 1441925813 ISBN-13(EAN): 9781441925817 Издательство: Springer Рейтинг: Цена: 14673.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Khasminskii, on his seventy-fifth birthday, for his contributions to stochastic processes and nonparametric estimation theory an IMA participating institution conference entitled "Conference on Asymptotic Analysis in Stochastic Processes, Nonparametric Estimation, and Related Problems" was held.
Название: Categorical and Nonparametric Data Analysis ISBN: 0367698153 ISBN-13(EAN): 9780367698157 Издательство: Taylor&Francis Рейтинг: Цена: 11023.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Автор: Nussbaum E Michael Название: Categorical and Nonparametric Data Analysis ISBN: 1138787825 ISBN-13(EAN): 9781138787827 Издательство: Taylor&Francis Рейтинг: Цена: 12248.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Featuring in-depth coverage of categorical and nonparametric statistics, this book provides a conceptual framework for choosing the most appropriate type of test in various research scenarios. Class tested at the University of Nevada, the book's clear explanations of the underlying assumptions, computer simulations, and Exploring the Concept boxes help reduce reader anxiety. Problems inspired by actual studies provide meaningful illustrations of the techniques. The underlying assumptions of each test and the factors that impact validity and statistical power are reviewed so readers can explain their assumptions and how tests work in future publications. Numerous examples from psychology, education, and other social sciences demonstrate varied applications of the material. Basic statistics and probability are reviewed for those who need a refresher. Mathematical derivations are placed in optional appendices for those interested in this detailed coverage. Highlights include the following: Unique coverage of categorical and nonparametric statistics better prepares readers to select the best technique for their particular research project; however, some chapters can be omitted entirely if preferred. Step-by-step examples of each test help readers see how the material is applied in a variety of disciplines. Although the book can be used with any program, examples of how to use the tests in SPSS and Excel foster conceptual understanding. Exploring the Concept boxes integrated throughout prompt students to review key material and draw links between the concepts to deepen understanding. Problems in each chapter help readers test their understanding of the material. Emphasis on selecting tests that maximize power helps readers avoid "marginally" significant results. Website (www.routledge.com/9781138787827) features datasets for the book's examples and problems, and for the instructor, PowerPoint slides, sample syllabi, answers to the even-numbered problems, and Excel data sets for lecture purposes. Intended for individual or combined graduate or advanced undergraduate courses in categorical and nonparametric data analysis, cross-classified data analysis, advanced statistics and/or quantitative techniques taught in psychology, education, human development, sociology, political science, and other social and life sciences, the book also appeals to researchers in these disciplines. The nonparametric chapters can be deleted if preferred. Prerequisites include knowledge of t tests and ANOVA.
Featuring in-depth coverage of categorical and nonparametric statistics, this book provides a conceptual framework for choosing the most appropriate type of test in various research scenarios. Class tested at the University of Nevada, the book's clear explanations of the underlying assumptions, computer simulations, and Exploring the Concept boxes help reduce reader anxiety. Problems inspired by actual studies provide meaningful illustrations of the techniques. The underlying assumptions of each test and the factors that impact validity and statistical power are reviewed so readers can explain their assumptions and how tests work in future publications. Numerous examples from psychology, education, and other social sciences demonstrate varied applications of the material. Basic statistics and probability are reviewed for those who need a refresher. Mathematical derivations are placed in optional appendices for those interested in this detailed coverage.
Highlights include the following:
Unique coverage of categorical and nonparametric statistics better prepares readers to select the best technique for their particular research project; however, some chapters can be omitted entirely if preferred.
Step-by-step examples of each test help readers see how the material is applied in a variety of disciplines.
Although the book can be used with any program, examples of how to use the tests in SPSS and Excel foster conceptual understanding.
Exploring the Concept boxes integrated throughout prompt students to review key material and draw links between the concepts to deepen understanding.
Problems in each chapter help readers test their understanding of the material.
Emphasis on selecting tests that maximize power helps readers avoid "marginally" significant results.
Website (www.routledge.com/9781138787827) features datasets for the book's examples and problems, and for the instructor, PowerPoint slides, sample syllabi, answers to the even-numbered problems, and Excel data sets for lecture purposes.
Intended for individual or combined graduate or advanced undergraduate courses in categorical and nonparametric data analysis, cross-classified data analysis, advanced statistics and/or quantitative techniques taught in psychology, education, human development, sociology, political science, and other social and life sciences, the book also appeals to researchers in these disciplines. The nonparametric chapters can be deleted if preferred. Prerequisites include knowledge of t tests and ANOVA.
Автор: Hans-Georg M?ller Название: Nonparametric Regression Analysis of Longitudinal Data ISBN: 038796844X ISBN-13(EAN): 9780387968445 Издательство: Springer Рейтинг: Цена: 16769.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This text evolved during a set of lectures given by the author at the Division of Statistics at the University of California, Davis in Fall 1986 and is based on the author`s Habilitationsschrift submitted to the University of Marburg in Spring 1985 as well as on published and unpublished work.
Автор: Muller, P., Quintana, F.A., Jara, A., Hanson, T. Название: Bayesian Nonparametric Data Analysis ISBN: 3319189670 ISBN-13(EAN): 9783319189673 Издательство: Springer Рейтинг: Цена: 11878.00 р. Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones.
A New Way of Analyzing Object Data from a Nonparametric Viewpoint
Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis provides one of the first thorough treatments of the theory and methodology for analyzing data on manifolds. It also presents in-depth applications to practical problems arising in a variety of fields, including statistics, medical imaging, computer vision, pattern recognition, and bioinformatics.
The book begins with a survey of illustrative examples of object data before moving to a review of concepts from mathematical statistics, differential geometry, and topology. The authors next describe theory and methods for working on various manifolds, giving a historical perspective of concepts from mathematics and statistics. They then present problems from a wide variety of areas, including diffusion tensor imaging, similarity shape analysis, directional data analysis, and projective shape analysis for machine vision. The book concludes with a discussion of current related research and graduate-level teaching topics as well as considerations related to computational statistics.
Researchers in diverse fields must combine statistical methodology with concepts from projective geometry, differential geometry, and topology to analyze data objects arising from non-Euclidean object spaces. An expert-driven guide to this approach, this book covers the general nonparametric theory for analyzing data on manifolds, methods for working with specific spaces, and extensive applications to practical research problems. These problems show how object data analysis opens a formidable door to the realm of big data analysis.
ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru