Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Feature Selection for High-Dimensional Data, Bolуn-Canedo Verуnica, Sбnchez-Maroсo Noelia, Alonso-Betanzos Amparo


Варианты приобретения
Цена: 6986.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Bolуn-Canedo Verуnica, Sбnchez-Maroсo Noelia, Alonso-Betanzos Amparo
Название:  Feature Selection for High-Dimensional Data
ISBN: 9783319366432
Издательство: Springer
Классификация:


ISBN-10: 3319366432
Обложка/Формат: Paperback
Страницы: 147
Вес: 0.24 кг.
Дата издания: 23.08.2016
Серия: Artificial intelligence: foundations, theory, and algorithms
Язык: English
Издание: Softcover reprint of
Иллюстрации: 1 tables, color; 54 tables, black and white; xv, 147 p.
Размер: 23.39 x 15.60 x 0.89 cm
Читательская аудитория: General (us: trade)
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Introduction to High-Dimensionality.- Foundations of Feature Selection.- Experimental Framework.- Critical Review of Feature Selection Methods.- Application of Feature Selection to Real Problems.- Emerging Challenges.


Advances in Feature Selection for Data and Pattern Recognition

Автор: Urszula Sta?czyk; Beata Zielosko; Lakhmi C. Jain
Название: Advances in Feature Selection for Data and Pattern Recognition
ISBN: 3319675877 ISBN-13(EAN): 9783319675879
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents recent developments and research trends in the field of feature selection for data and pattern recognition, highlighting a number of recent advances. The field of feature selection is evolving constantly, providing numerous new algorithms, new solutions and new applications.

Modern Data Mining Algorithms in C++ and Cuda C: Recent Developments in Feature Extraction and Selection Algorithms for Data Science

Автор: Masters Timothy
Название: Modern Data Mining Algorithms in C++ and Cuda C: Recent Developments in Feature Extraction and Selection Algorithms for Data Science
ISBN: 1484259874 ISBN-13(EAN): 9781484259870
Издательство: Springer
Рейтинг:
Цена: 9083.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Discover a variety of data-mining algorithms that are useful for selecting small sets of important features from among unwieldy masses of candidates, or extracting useful features from measured variables.

Raman spectroscopy of two-dimensional materials /

Автор: Tan, Ping-Heng.
Название: Raman spectroscopy of two-dimensional materials /
ISBN: 9811318271 ISBN-13(EAN): 9789811318276
Издательство: Springer
Рейтинг:
Цена: 25155.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book shows the electronic, optical and lattice-vibration properties of the two-dimensional materials which are revealed by the Raman spectroscopy. It consists of eleven chapters covering various Raman spectroscopy techniques (ultralow-frequency, resonant Raman spectroscopy, Raman imaging), different kinds of two-dimensional materials (in-plane isotropy and anisotropy materials, van der Waals heterostructures) and their physical properties (double-resonant theory, surface and interface effect). The topics include the theory origin, experimental phenomenon and advanced techniques in this area. This book is interesting and useful to a wide readership in various fields of condensed matter physics, materials science and engineering.

Feature Selection for High-Dimensional Data

Автор: Ver?nica Bol?n-Canedo; Noelia S?nchez-Maro?o; Ampa
Название: Feature Selection for High-Dimensional Data
ISBN: 3319218573 ISBN-13(EAN): 9783319218571
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Introduction to High-Dimensionality.- Foundations of Feature Selection.- Experimental Framework.- Critical Review of Feature Selection Methods.- Application of Feature Selection to Real Problems.- Emerging Challenges.

Advances in Feature Selection for Data and Pattern Recognition

Автор: Urszula Sta?czyk; Beata Zielosko; Lakhmi C. Jain
Название: Advances in Feature Selection for Data and Pattern Recognition
ISBN: 3319884522 ISBN-13(EAN): 9783319884523
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Поставка под заказ.

Описание:

This book presents recent developments and research trends in the field of feature selection for data and pattern recognition, highlighting a number of latest advances.

The field of feature selection is evolving constantly, providing numerous new algorithms, new solutions, and new applications. Some of the advances presented focus on theoretical approaches, introducing novel propositions highlighting and discussing properties of objects, and analysing the intricacies of processes and bounds on computational complexity, while others are dedicated to the specific requirements of application domains or the particularities of tasks waiting to be solved or improved.

Divided into four parts – nature and representation of data; ranking and exploration of features; image, shape, motion, and audio detection and recognition; decision support systems, it is of great interest to a large section of researchers including students, professors and practitioners.
Clustering High--Dimensional Data

Автор: Francesco Masulli; Alfredo Petrosino; Stefano Rove
Название: Clustering High--Dimensional Data
ISBN: 3662485761 ISBN-13(EAN): 9783662485767
Издательство: Springer
Рейтинг:
Цена: 5590.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book constitutes the proceedings of the International Workshop on Clustering High-Dimensional Data, CHDD 2012, held in Naples, Italy, in May 2012. and the most common approach to tackle dimensionality problems, namely, dimensionality reduction and its application in clustering.

Hierarchical feature selection for knowledge discovery

Автор: Wan, Cen
Название: Hierarchical feature selection for knowledge discovery
ISBN: 3319979183 ISBN-13(EAN): 9783319979182
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book is the first work that systematically describes the procedure of data mining and knowledge discovery on Bioinformatics databases by using the state-of-the-art hierarchical feature selection algorithms. The novelties of this book are three-fold. To begin with, this book discusses the hierarchical feature selection in depth, which is generally a novel research area in Data Mining/Machine Learning. Seven different state-of-the-art hierarchical feature selection algorithms are discussed and evaluated by working with four types of interpretable classification algorithms (i.e. three types of Bayesian network classification algorithms and the k-nearest neighbours classification algorithm). Moreover, this book discusses the application of those hierarchical feature selection algorithms on the well-known Gene Ontology database, where the entries (terms) are hierarchically structured. Gene Ontology database that unifies the representations of gene and gene products annotation provides the resource for mining valuable knowledge about certain biological research topics, such as the Biology of Ageing. Furthermore, this book discusses the mined biological patterns by the hierarchical feature selection algorithms relevant to the ageing-associated genes. Those patterns reveal the potential ageing-associated factors that inspire future research directions for the Biology of Ageing research.

Recent Advances in Ensembles for Feature Selection

Автор: Bol?n-Canedo
Название: Recent Advances in Ensembles for Feature Selection
ISBN: 331990079X ISBN-13(EAN): 9783319900797
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book offers a comprehensive overview of ensemble learning in the field of feature selection (FS), which consists of combining the output of multiple methods to obtain better results than any single method.

Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering

Автор: Laith Mohammad Qasim Abualigah
Название: Feature Selection and Enhanced Krill Herd Algorithm for Text Document Clustering
ISBN: 303010673X ISBN-13(EAN): 9783030106737
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book puts forward a new method for solving the text document (TD) clustering problem, which is established in two main stages: (i) A new feature selection method based on a particle swarm optimization algorithm with a novel weighting scheme is proposed, as well as a detailed dimension reduction technique, in order to obtain a new subset of more informative features with low-dimensional space. This new subset is subsequently used to improve the performance of the text clustering (TC) algorithm and reduce its computation time. The k-mean clustering algorithm is used to evaluate the effectiveness of the obtained subsets. (ii) Four krill herd algorithms (KHAs), namely, the (a) basic KHA, (b) modified KHA, (c) hybrid KHA, and (d) multi-objective hybrid KHA, are proposed to solve the TC problem; each algorithm represents an incremental improvement on its predecessor. For the evaluation process, seven benchmark text datasets are used with different characterizations and complexities.Text document (TD) clustering is a new trend in text mining in which the TDs are separated into several coherent clusters, where all documents in the same cluster are similar. The findings presented here confirm that the proposed methods and algorithms delivered the best results in comparison with other, similar methods to be found in the literature.

Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications

Автор: Raza Muhammad Summair, Qamar Usman
Название: Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications
ISBN: 9813291656 ISBN-13(EAN): 9789813291652
Издательство: Springer
Рейтинг:
Цена: 12577.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book provides a comprehensive introduction to rough set-based feature selection. Rough set theory, first proposed by Zdzislaw Pawlak in 1982, continues to evolve. Concerned with the classification and analysis of imprecise or uncertain information and knowledge, it has become a prominent tool for data analysis, and enables the reader to systematically study all topics in rough set theory (RST) including preliminaries, advanced concepts, and feature selection using RST. The book is supplemented with an RST-based API library that can be used to implement several RST concepts and RST-based feature selection algorithms.The book provides an essential reference guide for students, researchers, and developers working in the areas of feature selection, knowledge discovery, and reasoning with uncertainty, especially those who are working in RST and granular computing. The primary audience of this book is the research community using rough set theory (RST) to perform feature selection (FS) on large-scale datasets in various domains. However, any community interested in feature selection such as medical, banking, and finance can also benefit from the book. This second edition also covers the dominance-based rough set approach and fuzzy rough sets. The dominance-based rough set approach (DRSA) is an extension of the conventional rough set approach and supports the preference order using the dominance principle. In turn, fuzzy rough sets are fuzzy generalizations of rough sets. An API library for the DRSA is also provided with the second edition of the book.

Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications

Автор: Raza Muhammad Summair, Qamar Usman
Название: Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications
ISBN: 981135278X ISBN-13(EAN): 9789811352782
Издательство: Springer
Рейтинг:
Цена: 15372.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Introduction to Feature Selection.- Background.- Rough Set Theory.- Advance Concepts in RST.- Rough Set Based Feature Selection Techniques.- Unsupervised Feature Selection using RST.- Critical Analysis of Feature Selection Algorithms.- RST Source Code.

Recent Advances in Ensembles for Feature Selection

Автор: Bolуn-Canedo Verуnica, Alonso-Betanzos Amparo
Название: Recent Advances in Ensembles for Feature Selection
ISBN: 3030079295 ISBN-13(EAN): 9783030079291
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book offers a comprehensive overview of ensemble learning in the field of feature selection (FS), which consists of combining the output of multiple methods to obtain better results than any single method.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия