Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Research Anthology on Implementing Sentiment Analysis Across Multiple Disciplines, 


Варианты приобретения
Цена: 335135.00р.
Кол-во:
 о цене
Наличие: Отсутствует. Возможна поставка под заказ.

При оформлении заказа до: 2025-09-08
Ориентировочная дата поставки: начало Октября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания


Название:  Research Anthology on Implementing Sentiment Analysis Across Multiple Disciplines
ISBN: 9781668463031
Издательство: Mare Nostrum (Eurospan)
Классификация:



ISBN-10: 1668463032
Обложка/Формат: Hardback
Страницы: 2250
Вес: 0.80 кг.
Дата издания: 30.09.2022
Серия: Computing & IT
Язык: English
Размер: 279 x 216
Читательская аудитория: Professional and scholarly
Ключевые слова: Computer networking & communications,Data mining,Natural language & machine translation, COMPUTERS / Databases / Data Mining,COMPUTERS / Natural Language Processing,COMPUTERS / Web / Social Networking
Рейтинг:
Поставляется из: Англии
Описание: Discusses the tools, methodologies, applications, and implementation of sentiment analysis across various disciplines and industries such as the pharmaceutical industry, government, and the tourism industry. The book also presents emerging technologies and developments within the field of sentiment analysis and opinion mining.


Sentiment analysis

Автор: Liu, Bing (university Of Illinois, Chicago)
Название: Sentiment analysis
ISBN: 1108486371 ISBN-13(EAN): 9781108486378
Издательство: Cambridge Academ
Рейтинг:
Цена: 10611.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Sentiment analysis is the computational study of people`s opinions, emotions, and attitudes. This comprehensive introduction covers all core areas useful for researchers and practitioners in natural language processing, computer science, management sciences, and the social sciences. The second edition includes new deep learning analysis methods.

New Opportunities for Sentiment Analysis and Information Processing

Автор: Sharaff Aakanksha, Sinha G. R., Bhatia Surbhi
Название: New Opportunities for Sentiment Analysis and Information Processing
ISBN: 1799880621 ISBN-13(EAN): 9781799880622
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 29522.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Multinational organizations have begun to realize that sentiment mining plays an important role for decision making and market strategy. The revolutionary growth of digital marketing not only changes the market game, but also brings forth new opportunities for skilled professionals and expertise. Currently, the technologies are rapidly changing, and artificial intelligence (AI) and machine learning are contributing as game-changing technologies. These are not only trending but are also increasingly popular among data scientists and data analysts.

New Opportunities for Sentiment Analysis and Information Processing provides interdisciplinary research in information retrieval and sentiment analysis including studies on extracting sentiments from textual data, sentiment visualization-based dimensionality reduction for multiple features, and deep learning-based multi-domain sentiment extraction. The book also optimizes techniques used for sentiment identification and examines applications of sentiment analysis and emotion detection. Covering such topics as communication networks, natural language processing, and semantic analysis, this book is essential for data scientists, data analysts, IT specialists, scientists, researchers, academicians, and students.

Sentic Computing

Автор: Erik Cambria; Amir Hussain
Название: Sentic Computing
ISBN: 3319236539 ISBN-13(EAN): 9783319236537
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Sentic Computing

Prominent Feature Extraction for Sentiment Analysis

Автор: Basant Agarwal; Namita Mittal
Название: Prominent Feature Extraction for Sentiment Analysis
ISBN: 3319253417 ISBN-13(EAN): 9783319253411
Издательство: Springer
Рейтинг:
Цена: 18284.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

1 Introduction

2 Literature Survey

3 Machine Learning Approach for Sentiment Analysis

4 Semantic Parsing using Dependency Rules

5 Sentiment Analysis using ConceptNet Ontology and Context

Information

6 Semantic Orientation based Approach for Sentiment Analysis

7 Conclusions and FutureWork

References

Glossary
Index

Deep Learning-Based Approaches for Sentiment Analysis

Автор: Basant Agarwal, Richi Nayak
Название: Deep Learning-Based Approaches for Sentiment Analysis
ISBN: 9811512159 ISBN-13(EAN): 9789811512155
Издательство: Springer
Рейтинг:
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years.

Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks

Автор: Arindam Chaudhuri
Название: Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks
ISBN: 9811374732 ISBN-13(EAN): 9789811374739
Издательство: Springer
Рейтинг:
Цена: 6986.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents the latest research on hierarchical deep learning for multi-modal sentiment analysis. Further, it analyses sentiments in Twitter blogs from both textual and visual content using hierarchical deep learning networks: hierarchical gated feedback recurrent neural networks (HGFRNNs). Several studies on deep learning have been conducted to date, but most of the current methods focus on either only textual content, or only visual content. In contrast, the proposed sentiment analysis model can be applied to any social blog dataset, making the book highly beneficial for postgraduate students and researchers in deep learning and sentiment analysis. The mathematical abstraction of the sentiment analysis model is presented in a very lucid manner. The complete sentiments are analysed by combining text and visual prediction results. The book’s novelty lies in its development of innovative hierarchical recurrent neural networks for analysing sentiments; stacking of multiple recurrent layers by controlling the signal flow from upper recurrent layers to lower layers through a global gating unit; evaluation of HGFRNNs with different types of recurrent units; and adaptive assignment of HGFRNN layers to different timescales. Considering the need to leverage large-scale social multimedia content for sentiment analysis, both state-of-the-art visual and textual sentiment analysis techniques are used for joint visual-textual sentiment analysis. The proposed method yields promising results from Twitter datasets that include both texts and images, which support the theoretical hypothesis.

Multimodal Sentiment Analysis

Автор: Soujanya Poria; Amir Hussain; Erik Cambria
Название: Multimodal Sentiment Analysis
ISBN: 3030069567 ISBN-13(EAN): 9783030069568
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Нет в наличии.

Описание: This latest volume in the series, Socio-Affective Computing, presents a set of novel approaches to analyze opinionated videos and to extract sentiments and emotions. Textual sentiment analysis framework as discussed in this book contains a novel way of doing sentiment analysis by merging linguistics with machine learning. Fusing textual information with audio and visual cues is found to be extremely useful which improves text, audio and visual based unimodal sentiment analyzer. This volume covers the three main topics of: textual preprocessing and sentiment analysis methods; frameworks to process audio and visual data; and methods of textual, audio and visual features fusion.The inclusion of key visualization and case studies will enable readers to understand better these approaches. Aimed at the Natural Language Processing, Affective Computing and Artificial Intelligence audiences, this comprehensive volume will appeal to a wide readership and will help readers to understand key details on multimodal sentiment analysis.

New Opportunities for Sentiment Analysis and Information Processing

Автор: Sharaff Aakanksha, Sinha G. R., Bhatia Surbhi
Название: New Opportunities for Sentiment Analysis and Information Processing
ISBN: 1799880613 ISBN-13(EAN): 9781799880615
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 39085.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Multinational organizations have begun to realize that sentiment mining plays an important role for decision making and market strategy. The revolutionary growth of digital marketing not only changes the market game, but also brings forth new opportunities for skilled professionals and expertise. Currently, the technologies are rapidly changing, and artificial intelligence (AI) and machine learning are contributing as game-changing technologies. These are not only trending but are also increasingly popular among data scientists and data analysts.

New Opportunities for Sentiment Analysis and Information Processing provides interdisciplinary research in information retrieval and sentiment analysis including studies on extracting sentiments from textual data, sentiment visualization-based dimensionality reduction for multiple features, and deep learning-based multi-domain sentiment extraction. The book also optimizes techniques used for sentiment identification and examines applications of sentiment analysis and emotion detection. Covering such topics as communication networks, natural language processing, and semantic analysis, this book is essential for data scientists, data analysts, IT specialists, scientists, researchers, academicians, and students.

Deep Learning-Based Approaches for Sentiment Analysis

Автор: Agarwal Basant, Nayak Richi, Mittal Namita
Название: Deep Learning-Based Approaches for Sentiment Analysis
ISBN: 9811512183 ISBN-13(EAN): 9789811512186
Издательство: Springer
Цена: 22359.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years.

Prominent Feature Extraction for Sentiment Analysis

Автор: Agarwal Basant, Mittal Namita
Название: Prominent Feature Extraction for Sentiment Analysis
ISBN: 3319797751 ISBN-13(EAN): 9783319797755
Издательство: Springer
Рейтинг:
Цена: 13974.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

1 Introduction

2 Literature Survey

3 Machine Learning Approach for Sentiment Analysis

4 Semantic Parsing using Dependency Rules

5 Sentiment Analysis using ConceptNet Ontology and Context

Information

6 Semantic Orientation based Approach for Sentiment Analysis

7 Conclusions and FutureWork

References

Glossary
Index

Data Mining Approaches for Big Data and Sentiment Analysis in Social Media

Автор: Gupta Brij B., Perakovic Dragan, Abd El-Latif Ahmed A.
Название: Data Mining Approaches for Big Data and Sentiment Analysis in Social Media
ISBN: 1799884147 ISBN-13(EAN): 9781799884149
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 28413.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Social media sites are constantly evolving with huge amounts of scattered data or big data, which makes it difficult for researchers to trace the information flow. It is a daunting task to extract a useful piece of information from the vast unstructured big data; the disorganized structure of social media contains data in various forms such as text and videos as well as huge real-time data on which traditional analytical methods like statistical approaches fail miserably. Due to this, there is a need for efficient data mining techniques that can overcome the shortcomings of the traditional approaches.

Data Mining Approaches for Big Data and Sentiment Analysis in Social Media encourages researchers to explore the key concepts of data mining, such as how they can be utilized on online social media platforms, and provides advances on data mining for big data and sentiment analysis in online social media, as well as future research directions. Covering a range of concepts from machine learning methods to data mining for big data analytics, this book is ideal for graduate students, academicians, faculty members, scientists, researchers, data analysts, social media analysts, managers, and software developers who are seeking to learn and carry out research in the area of data mining for big data and sentiment.

Data Mining Approaches for Big Data and Sentiment Analysis in Social Media

Автор: Gupta Brij B., Perakovic Dragan, Abd El-Latif Ahmed A.
Название: Data Mining Approaches for Big Data and Sentiment Analysis in Social Media
ISBN: 1799884139 ISBN-13(EAN): 9781799884132
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 37561.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Social media sites are constantly evolving with huge amounts of scattered data or big data, which makes it difficult for researchers to trace the information flow. It is a daunting task to extract a useful piece of information from the vast unstructured big data; the disorganized structure of social media contains data in various forms such as text and videos as well as huge real-time data on which traditional analytical methods like statistical approaches fail miserably. Due to this, there is a need for efficient data mining techniques that can overcome the shortcomings of the traditional approaches.

Data Mining Approaches for Big Data and Sentiment Analysis in Social Media encourages researchers to explore the key concepts of data mining, such as how they can be utilized on online social media platforms, and provides advances on data mining for big data and sentiment analysis in online social media, as well as future research directions. Covering a range of concepts from machine learning methods to data mining for big data analytics, this book is ideal for graduate students, academicians, faculty members, scientists, researchers, data analysts, social media analysts, managers, and software developers who are seeking to learn and carry out research in the area of data mining for big data and sentiment.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия