Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Reinforcement Learning and Dynamic Programming Using Function Approximators, Busoniu, Lucian


Варианты приобретения
Цена: 16843.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: Есть  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Busoniu, Lucian
Название:  Reinforcement Learning and Dynamic Programming Using Function Approximators
ISBN: 9781439821084
Издательство: Taylor&Francis
Классификация:

ISBN-10: 1439821089
Обложка/Формат: Hardback
Страницы: 280
Вес: 0.59 кг.
Дата издания: 29.04.2010
Серия: Automation and control engineering
Язык: English
Иллюстрации: 15 tables, black and white; 74 illustrations, black and white
Размер: 243 x 166 x 22
Читательская аудитория: Postgraduate, research & scholarly
Рейтинг:
Поставляется из: Европейский союз


Reinforcement Learning for Sequential Decision and Optimal Control

Автор: Shengbo Eben Li
Название: Reinforcement Learning for Sequential Decision and Optimal Control
ISBN: 9811977836 ISBN-13(EAN): 9789811977831
Издательство: Springer
Рейтинг:
Цена: 11179.00 р.
Наличие на складе: Поставка под заказ.

Описание: Have you ever wondered how AlphaZero learns to defeat the top human Go players? Do you have any clues about how an autonomous driving system can gradually develop self-driving skills beyond normal drivers? What is the key that enables AlphaStar to make decisions in Starcraft, a notoriously difficult strategy game that has partial information and complex rules? The core mechanism underlying those recent technical breakthroughs is reinforcement learning (RL), a theory that can help an agent to develop the self-evolution ability through continuing environment interactions. In the past few years, the AI community has witnessed phenomenal success of reinforcement learning in various fields, including chess games, computer games and robotic control. RL is also considered to be a promising and powerful tool to create general artificial intelligence in the future. As an interdisciplinary field of trial-and-error learning and optimal control, RL resembles how humans reinforce their intelligence by interacting with the environment and provides a principled solution for sequential decision making and optimal control in large-scale and complex problems. Since RL contains a wide range of new concepts and theories, scholars may be plagued by a number of questions: What is the inherent mechanism of reinforcement learning? What is the internal connection between RL and optimal control? How has RL evolved in the past few decades, and what are the milestones? How do we choose and implement practical and effective RL algorithms for real-world scenarios? What are the key challenges that RL faces today, and how can we solve them? What is the current trend of RL research? You can find answers to all those questions in this book. The purpose of the book is to help researchers and practitioners take a comprehensive view of RL and understand the in-depth connection between RL and optimal control. The book includes not only systematic and thorough explanations of theoretical basics but also methodical guidance of practical algorithm implementations. The book intends to provide a comprehensive coverage of both classic theories and recent achievements, and the content is carefully and logically organized, including basic topics such as the main concepts and terminologies of RL, Markov decision process (MDP), Bellman’s optimality condition, Monte Carlo learning, temporal difference learning, stochastic dynamic programming, function approximation, policy gradient methods, approximate dynamic programming, and deep RL, as well as the latest advances in action and state constraints, safety guarantee, reference harmonization, robust RL, partially observable MDP, multiagent RL, inverse RL, offline RL, and so on.

Foundations of reinforcement learning with applications in finance

Автор: Rao, Ashwin (stanford University, Usa) Jelvis, Tikhon
Название: Foundations of reinforcement learning with applications in finance
ISBN: 1032124121 ISBN-13(EAN): 9781032124124
Издательство: Taylor&Francis
Рейтинг:
Цена: 11482.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book demystifies Reinforcement Learning, and makes it a practically useful tool for those studying and working in applied areas, especially finance. This book seeks to overcome that barrier, and to introduce the foundations of RL in a way that balances depth of understanding with clear, minimally technical delivery.

Output Feedback Reinforcement Learning Control for Linear Systems

Автор: Rizvi
Название: Output Feedback Reinforcement Learning Control for Linear Systems
ISBN: 3031158571 ISBN-13(EAN): 9783031158575
Издательство: Springer
Рейтинг:
Цена: 20962.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This monograph explores the analysis and design of model-free optimal control systems based on reinforcement learning (RL) theory, presenting new methods that overcome recent challenges faced by RL. New developments in the design of sensor data efficient RL algorithms are demonstrated that not only reduce the requirement of sensors by means of output feedback, but also ensure optimality and stability guarantees. A variety of practical challenges are considered, including disturbance rejection, control constraints, and communication delays. Ideas from game theory are incorporated to solve output feedback disturbance rejection problems, and the concepts of low gain feedback control are employed to develop RL controllers that achieve global stability under control constraints. Output Feedback Reinforcement Learning Control for Linear Systems will be a valuable reference for graduate students, control theorists working on optimal control systems, engineers, and applied mathematicians.

Ordinary and Fractional Approximation by Non-additive Integrals: Choquet, Shilkret and Sugeno Integral Approximators

Автор: George A. Anastassiou
Название: Ordinary and Fractional Approximation by Non-additive Integrals: Choquet, Shilkret and Sugeno Integral Approximators
ISBN: 3030042863 ISBN-13(EAN): 9783030042868
Издательство: Springer
Рейтинг:
Цена: 19564.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Ordinary and fractional approximations by non-additive integrals, especially by integral approximators of Choquet, Silkret and Sugeno types, are a new trend in approximation theory. These integrals are only subadditive and only the first two are positive linear, and they produce very fast and flexible approximations based on limited data. The author presents both the univariate and multivariate cases. The involved set functions are much weaker forms of the Lebesgue measure and they were conceived to fulfill the needs of economic theory and other applied sciences.The approaches presented here are original, and all chapters are self-contained and can be read independently. Moreover, the book’s findings are sure to find application in many areas of pure and applied mathematics, especially in approximation theory, numerical analysis and mathematical economics (both ordinary and fractional). Accordingly, it offers a unique resource for researchers, graduate students, and for coursework in the above-mentioned fields, and belongs in all science and engineering libraries.

Deep Reinforcement Learning with Guaranteed Performance

Автор: Yinyan Zhang; Shuai Li; Xuefeng Zhou
Название: Deep Reinforcement Learning with Guaranteed Performance
ISBN: 3030333833 ISBN-13(EAN): 9783030333836
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book discusses methods and algorithms for the near-optimal adaptive control of nonlinear systems, including the corresponding theoretical analysis and simulative examples, and presents two innovative methods for the redundancy resolution of redundant manipulators with consideration of parameter uncertainty and periodic disturbances.It also reports on a series of systematic investigations on a near-optimal adaptive control method based on the Taylor expansion, neural networks, estimator design approaches, and the idea of sliding mode control, focusing on the tracking control problem of nonlinear systems under different scenarios. The book culminates with a presentation of two new redundancy resolution methods; one addresses adaptive kinematic control of redundant manipulators, and the other centers on the effect of periodic input disturbance on redundancy resolution.Each self-contained chapter is clearly written, making the book accessible to graduate students as well as academic and industrial researchers in the fields of adaptive and optimal control, robotics, and dynamic neural networks.

Handbook of Reinforcement Learning and Control

Автор: Vamvoudakis Kyriakos G., Wan Yan, Lewis Frank L.
Название: Handbook of Reinforcement Learning and Control
ISBN: 3030609898 ISBN-13(EAN): 9783030609894
Издательство: Springer
Цена: 32142.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: The Cognitive Dialogue: A New Architecture for Perception and Cognition.- Rooftop-Aware Emergency Landing Planning for Small Unmanned Aircraft Systems.- Quantum Reinforcement Learning in Changing Environment.- The Role of Thermodynamics in the Future Research Directions in Control and Learning.- Mixed Density Reinforcement Learning Methods for Approximate Dynamic Programming.- Analyzing and Mitigating Link-Flooding DoS Attacks Using Stackelberg Games and Adaptive Learning.- Learning and Decision Making for Complex Systems Subjected to Uncertainties: A Stochastic Distribution Control Approach.- Optimal Adaptive Control of Partially Unknown Linear Continuous-time Systems with Input and State Delay.- Gradient Methods Solve the Linear Quadratic Regulator Problem Exponentially Fast.- Architectures, Data Representations and Learning Algorithms: New Directions at the Confluence of Control and Learning.- Reinforcement Learning for Optimal Feedback Control and Multiplayer Games.- Fundamental Principles of Design for Reinforcement Learning Algorithms Course Titles.- Long-Term Impacts of Fair Machine Learning.- Learning-based Model Reduction for Partial Differential Equations with Applications to Thermo-Fluid Models' Identification, State Estimation, and Stabilization.- CESMA: Centralized Expert Supervises Multi-Agents, for Decentralization.- A Unified Framework for Reinforcement Learning and Sequential Decision Analytics.- Trading Utility and Uncertainty: Applying the Value of Information to Resolve the Exploration-Exploitation Dilemma in Reinforcement Learning.- Multi-Agent Reinforcement Learning: Recent Advances, Challenges, and Applications.- Reinforcement Learning Applications, An Industrial Perspective.- A Hybrid Dynamical Systems Perspective of Reinforcement Learning.- Bounded Rationality and Computability Issues in Learning, Perception, Decision-Making, and Games Panagiotis Tsiotras.- Mixed Modality Learning.- Computational Intelligence in Uncertainty Quantification for Learning Control and Games.- Reinforcement Learning Based Optimal Stabilization of Unknown Time Delay Systems Using State and Output Feedback.- Robust Autonomous Driving with Humans in the Loop.- Boundedly Rational Reinforcement Learning for Secure Control.

Stability Enhancement Methods of Inverters Based on Lyapunov Function, Predictive Control, and Reinforcement Learning

Автор: Zhang
Название: Stability Enhancement Methods of Inverters Based on Lyapunov Function, Predictive Control, and Reinforcement Learning
ISBN: 9811971900 ISBN-13(EAN): 9789811971907
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book introduces a family of large-signal stability-based control methods for different power inverters (grid-connected inverter, standalone inverter, single-phase inverter, and three-phase inverter) in practical applications. Power inverters have stability issues, which include the inverter's own instability as well as the inverter's instability in relation to the other power electronic devices in the system (i.e., weak grid and the EMI filter). Most of the stability analyses and solutions are based on small-signal stability technology. Unfortunately, in actuality, the majority of practical instability concerns in power inverter systems are large-signal stability problems, which, when compared to small-signal stability problems, can cause substantial damage to electrical equipment. As a result, researchers must conduct a comprehensive investigation of the large-signal stability challenge and solutions for power inverters. This book can be used as a reference for researchers, power inverters manufacturers, and end-users. As a result, the book will not become obsolete in the near future, regardless of technology advancements.

Deep Reinforcement Learning with Guaranteed Performance

Автор: Yinyan Zhang; Shuai Li; Xuefeng Zhou
Название: Deep Reinforcement Learning with Guaranteed Performance
ISBN: 3030333868 ISBN-13(EAN): 9783030333867
Издательство: Springer
Рейтинг:
Цена: 18167.00 р.
Наличие на складе: Поставка под заказ.

Описание: This book is devoted to the description of the most widely used classifications of the most frequent fractures in clinical practice. For each type of fracture one or several classifications are described.This edition will include new classifications and classifications that have gained popularity in the last 3 years, resulting in 25% new material.

Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles

Автор: Liu Teng
Название: Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles
ISBN: 1681736209 ISBN-13(EAN): 9781681736204
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 9286.00 р.
Наличие на складе: Нет в наличии.

Описание:

Powertrain electrification, fuel decarburization, and energy diversification are techniques that are spreading all over the world, leading to cleaner and more efficient vehicles.

Hybrid electric vehicles (HEVs) are considered a promising technology today to address growing air pollution and energy deprivation. To realize these gains and still maintain good performance, it is critical for HEVs to have sophisticated energy management systems. Supervised by such a system, HEVs could operate in different modes, such as full electric mode and power split mode. Hence, researching and constructing advanced energy management strategies (EMSs) is important for HEVs performance. There are a few books about rule- and optimization-based approaches for formulating energy management systems. Most of them concern traditional techniques and their efforts focus on searching for optimal control policies offline. There is still much room to introduce learning-enabled energy management systems founded in artificial intelligence and their real-time evaluation and application.

In this book, a series hybrid electric vehicle was considered as the powertrain model, to describe and analyze a reinforcement learning (RL)-enabled intelligent energy management system. The proposed system can not only integrate predictive road information but also achieve online learning and updating. Detailed powertrain modeling, predictive algorithms, and online updating technology are involved, and evaluation and verification of the presented energy management system is conducted and executed.

Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles

Автор: Liu Teng
Название: Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles
ISBN: 1681736187 ISBN-13(EAN): 9781681736181
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 6237.00 р.
Наличие на складе: Нет в наличии.

Описание:

Powertrain electrification, fuel decarburization, and energy diversification are techniques that are spreading all over the world, leading to cleaner and more efficient vehicles.

Hybrid electric vehicles (HEVs) are considered a promising technology today to address growing air pollution and energy deprivation. To realize these gains and still maintain good performance, it is critical for HEVs to have sophisticated energy management systems. Supervised by such a system, HEVs could operate in different modes, such as full electric mode and power split mode. Hence, researching and constructing advanced energy management strategies (EMSs) is important for HEVs performance. There are a few books about rule- and optimization-based approaches for formulating energy management systems. Most of them concern traditional techniques and their efforts focus on searching for optimal control policies offline. There is still much room to introduce learning-enabled energy management systems founded in artificial intelligence and their real-time evaluation and application.

In this book, a series hybrid electric vehicle was considered as the powertrain model, to describe and analyze a reinforcement learning (RL)-enabled intelligent energy management system. The proposed system can not only integrate predictive road information but also achieve online learning and updating. Detailed powertrain modeling, predictive algorithms, and online updating technology are involved, and evaluation and verification of the presented energy management system is conducted and executed.

Qualitative Spatial Abstraction in Reinforcement Learning

Автор: Lutz Frommberger
Название: Qualitative Spatial Abstraction in Reinforcement Learning
ISBN: 3642266002 ISBN-13(EAN): 9783642266003
Издательство: Springer
Рейтинг:
Цена: 16070.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Reinforcement learning has evolved to tackle domains that are yet to be fully understood, or are too complex for a closed description. In this book the author investigates whether suitable abstraction methods can overcome the discipline`s deficiencies.

Handbook of Reinforcement Learning and Control

Автор: Vamvoudakis
Название: Handbook of Reinforcement Learning and Control
ISBN: 3030609928 ISBN-13(EAN): 9783030609924
Издательство: Springer
Рейтинг:
Цена: 32142.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This handbook presents state-of-the-art research in reinforcement learning, focusing on its applications in the control and game theory of dynamic systems and future directions for related research and technology. The contributions gathered in this book deal with challenges faced when using learning and adaptation methods to solve academic and industrial problems, such as optimization in dynamic environments with single and multiple agents, convergence and performance analysis, and online implementation. They explore means by which these difficulties can be solved, and cover a wide range of related topics including: * deep learning; * artificial intelligence; * applications of game theory; * mixed modality learning; and * multi-agent reinforcement learning. Practicing engineers and scholars in the field of machine learning, game theory, and autonomous control will find the Handbook of Reinforcement Learning and Control to be thought-provoking, instructive and informative.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия