Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7(495) 980-12-10
  пн-пт: 10-18 сб,вс: 11-18
  shop@logobook.ru
   
    Поиск книг                    Поиск по списку ISBN Расширенный поиск    
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Хиты | |
 

Nonparametric Models for Longitudinal Data, Wu, Colin O.


Варианты приобретения
Цена: 8726.00р.
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: Есть  
При оформлении заказа до: 2025-08-18
Ориентировочная дата поставки: конец Сентября - начало Октября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Wu, Colin O.
Название:  Nonparametric Models for Longitudinal Data
ISBN: 9780367571665
Издательство: Taylor&Francis
Классификация:


ISBN-10: 0367571668
Обложка/Формат: Paperback
Страницы: 552
Вес: 0.45 кг.
Дата издания: 30.06.2020
Серия: Chapman & hall/crc monographs on statistics and applied probability
Язык: English
Размер: 155 x 235 x 37
Читательская аудитория: Tertiary education (us: college)
Подзаголовок: With implementation in r
Рейтинг:
Поставляется из: Европейский союз


Quality management and operations research

Автор: Faghih, Nezameddin Bonyadi, Ebrahim Sarreshtehdari, Lida
Название: Quality management and operations research
ISBN: 0367744902 ISBN-13(EAN): 9780367744908
Издательство: Taylor&Francis
Рейтинг:
Цена: 11255.00 р. 16078.00 -30%
Наличие на складе: Есть (1 шт.)
Описание: Offering a step-by-step approach for applying the Nonparametric Method with the Bayesian Approach to model complex relationships occurring in Reliability Engineering, Quality Management, and Operations Research, it also discusses survival and censored data, accelerated lifetime tests (issues in reliability data analysis), and R codes. This book uses the Nonparametric Bayesian approach in the fields of quality management and operations research. It presents a step-by-step approach for understanding and implementing these models, as well as includes R codes which can be used in any dataset. The book helps the readers to use statistical models in studying complex concepts and applying them to Operations Research, Industrial Engineering, Manufacturing Engineering, Computer Science, Quality and Reliability, Maintenance Planning and Operations Management.This book helps researchers, analysts, investigators, designers, producers, industrialists, entrepreneurs, and financial market decision makers, with finding the lifetime model of products, and for crucial decision-making in other markets.

An Introduction to nonparametric statistics

Автор: Kolassa, John E.
Название: An Introduction to nonparametric statistics
ISBN: 0367194848 ISBN-13(EAN): 9780367194840
Издательство: Taylor&Francis
Рейтинг:
Цена: 14086.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents the theory and practice of non-parametric statistics, with an emphasis on motivating principals. The course is a combination of traditional rank based methods and more computationally-intensive topics like density estimation, kernel smoothers in regression, and robustness. The text is aimed at MS students.

Data Analysis and Approximate Models

Автор: Davies, Patrick Laurie
Название: Data Analysis and Approximate Models
ISBN: 1482215861 ISBN-13(EAN): 9781482215861
Издательство: Taylor&Francis
Рейтинг:
Цена: 24499.00 р.
Наличие на складе: Нет в наличии.

Nonparametric Regression Analysis of Longitudinal Data

Автор: Hans-Georg M?ller
Название: Nonparametric Regression Analysis of Longitudinal Data
ISBN: 038796844X ISBN-13(EAN): 9780387968445
Издательство: Springer
Рейтинг:
Цена: 16769.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This text evolved during a set of lectures given by the author at the Division of Statistics at the University of California, Davis in Fall 1986 and is based on the author`s Habilitationsschrift submitted to the University of Marburg in Spring 1985 as well as on published and unpublished work.

Nonparametric and semiparametric models

Автор: Hardle, Wolfgang Karl Muller, Marlene Sperlich, Stefan Werwatz, Axel
Название: Nonparametric and semiparametric models
ISBN: 3642620760 ISBN-13(EAN): 9783642620768
Издательство: Springer
Рейтинг:
Цена: 21661.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: It naturally splits into two parts: The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers.

Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis

Автор: Patrangenaru, Victor
Название: Nonparametric Statistics on Manifolds and Their Applications to Object Data Analysis
ISBN: 1439820503 ISBN-13(EAN): 9781439820506
Издательство: Taylor&Francis
Рейтинг:
Цена: 24499.00 р.
Наличие на складе: Нет в наличии.

A Parametric Approach to Nonparametric Statistics

Автор: Mayer Alvo; Philip L. H. Yu
Название: A Parametric Approach to Nonparametric Statistics
ISBN: 3030068048 ISBN-13(EAN): 9783030068042
Издательство: Springer
Рейтинг:
Цена: 8384.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book demonstrates that nonparametric statistics can be taught from a parametric point of view. As a result, one can exploit various parametric tools such as the use of the likelihood function, penalized likelihood and score functions to not only derive well-known tests but to also go beyond and make use of Bayesian methods to analyze ranking data. The book bridges the gap between parametric and nonparametric statistics and presents the best practices of the former while enjoying the robustness properties of the latter.This book can be used in a graduate course in nonparametrics, with parts being accessible to senior undergraduates. In addition, the book will be of wide interest to statisticians and researchers in applied fields.

Categorical and Nonparametric Data Analysis

Автор: Nussbaum E Michael
Название: Categorical and Nonparametric Data Analysis
ISBN: 1138787825 ISBN-13(EAN): 9781138787827
Издательство: Taylor&Francis
Рейтинг:
Цена: 12248.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: Featuring in-depth coverage of categorical and nonparametric statistics, this book provides a conceptual framework for choosing the most appropriate type of test in various research scenarios. Class tested at the University of Nevada, the book's clear explanations of the underlying assumptions, computer simulations, and Exploring the Concept boxes help reduce reader anxiety. Problems inspired by actual studies provide meaningful illustrations of the techniques. The underlying assumptions of each test and the factors that impact validity and statistical power are reviewed so readers can explain their assumptions and how tests work in future publications. Numerous examples from psychology, education, and other social sciences demonstrate varied applications of the material. Basic statistics and probability are reviewed for those who need a refresher. Mathematical derivations are placed in optional appendices for those interested in this detailed coverage. Highlights include the following: Unique coverage of categorical and nonparametric statistics better prepares readers to select the best technique for their particular research project; however, some chapters can be omitted entirely if preferred. Step-by-step examples of each test help readers see how the material is applied in a variety of disciplines.  Although the book can be used with any program, examples of how to use the tests in SPSS and Excel foster conceptual understanding. Exploring the Concept boxes integrated throughout prompt students to review key material and draw links between the concepts to deepen understanding.  Problems in each chapter help readers test their understanding of the material.  Emphasis on selecting tests that maximize power helps readers avoid "marginally" significant results.  Website (www.routledge.com/9781138787827) features datasets for the book's examples and problems, and for the instructor, PowerPoint slides, sample syllabi, answers to the even-numbered problems, and Excel data sets for lecture purposes. Intended for individual or combined graduate or advanced undergraduate courses in categorical and nonparametric data analysis, cross-classified data analysis, advanced statistics and/or quantitative techniques taught in psychology, education, human development, sociology, political science, and other social and life sciences, the book also appeals to researchers in these disciplines. The nonparametric chapters can be deleted if preferred. Prerequisites include knowledge of t tests and ANOVA.

Bayesian Nonparametric Data Analysis

Автор: Peter M?ller; Fernando Andres Quintana; Alejandro
Название: Bayesian Nonparametric Data Analysis
ISBN: 3319368427 ISBN-13(EAN): 9783319368429
Издательство: Springer
Рейтинг:
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones.

Missing and modified data in nonparametric estimation

Автор: Efromovich, Sam (ut Dallas, Richardson, Tx)
Название: Missing and modified data in nonparametric estimation
ISBN: 1138054887 ISBN-13(EAN): 9781138054882
Издательство: Taylor&Francis
Рейтинг:
Цена: 15004.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book presents a systematic and unified approach for modern nonparametric treatment of missing and modified data via examples of density and hazard rate estimation, nonparametric regression, filtering signals, and time series analysis. All basic types of missing at random and not at random, biasing, truncation, censoring, and measurement errors are discussed, and their treatment is explained. Ten chapters of the book cover basic cases of direct data, biased data, nondestructive and destructive missing, survival data modified by truncation and censoring, missing survival data, stationary and nonstationary time series and processes, and ill-posed modifications. The coverage is suitable for self-study or a one-semester course for graduate students with a prerequisite of a standard course in introductory probability. Exercises of various levels of difficulty will be helpful for the instructor and self-study. The book is primarily about practically important small samples. It explains when consistent estimation is possible, and why in some cases missing data should be ignored and why others must be considered. If missing or data modification makes consistent estimation impossible, then the author explains what type of action is needed to restore the lost information. The book contains more than a hundred figures with simulated data that explain virtually every setting, claim, and development. The companion R software package allows the reader to verify, reproduce and modify every simulation and used estimators. This makes the material fully transparent and allows one to study it interactively. Sam Efromovich is the Endowed Professor of Mathematical Sciences and the Head of the Actuarial Program at the University of Texas at Dallas. He is well known for his work on the theory and application of nonparametric curve estimation and is the author of Nonparametric Curve Estimation: Methods, Theory, and Applications. Professor Sam Efromovich is a Fellow of the Institute of Mathematical Statistics and the American Statistical Association.

Categorical and Nonparametric Data Analysis: Choosing the Best Statistical Technique

Автор: Nussbaum E. Michael
Название: Categorical and Nonparametric Data Analysis: Choosing the Best Statistical Technique
ISBN: 1848726031 ISBN-13(EAN): 9781848726031
Издательство: Taylor&Francis
Рейтинг:
Цена: 27562.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание:

Featuring in-depth coverage of categorical and nonparametric statistics, this book provides a conceptual framework for choosing the most appropriate type of test in various research scenarios. Class tested at the University of Nevada, the book's clear explanations of the underlying assumptions, computer simulations, and Exploring the Concept boxes help reduce reader anxiety. Problems inspired by actual studies provide meaningful illustrations of the techniques. The underlying assumptions of each test and the factors that impact validity and statistical power are reviewed so readers can explain their assumptions and how tests work in future publications. Numerous examples from psychology, education, and other social sciences demonstrate varied applications of the material. Basic statistics and probability are reviewed for those who need a refresher. Mathematical derivations are placed in optional appendices for those interested in this detailed coverage.

Highlights include the following:

  • Unique coverage of categorical and nonparametric statistics better prepares readers to select the best technique for their particular research project; however, some chapters can be omitted entirely if preferred.
  • Step-by-step examples of each test help readers see how the material is applied in a variety of disciplines.
  • Although the book can be used with any program, examples of how to use the tests in SPSS and Excel foster conceptual understanding.
  • Exploring the Concept boxes integrated throughout prompt students to review key material and draw links between the concepts to deepen understanding.
  • Problems in each chapter help readers test their understanding of the material.
  • Emphasis on selecting tests that maximize power helps readers avoid "marginally" significant results.
  • Website (www.routledge.com/9781138787827) features datasets for the book's examples and problems, and for the instructor, PowerPoint slides, sample syllabi, answers to the even-numbered problems, and Excel data sets for lecture purposes.

Intended for individual or combined graduate or advanced undergraduate courses in categorical and nonparametric data analysis, cross-classified data analysis, advanced statistics and/or quantitative techniques taught in psychology, education, human development, sociology, political science, and other social and life sciences, the book also appeals to researchers in these disciplines. The nonparametric chapters can be deleted if preferred. Prerequisites include knowledge of t tests and ANOVA.

Bayesian Nonparametric Data Analysis

Автор: Muller, P., Quintana, F.A., Jara, A., Hanson, T.
Название: Bayesian Nonparametric Data Analysis
ISBN: 3319189670 ISBN-13(EAN): 9783319189673
Издательство: Springer
Рейтинг:
Цена: 11878.00 р.
Наличие на складе: Есть у поставщика Поставка под заказ.

Описание: This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones.


ООО "Логосфера " Тел:+7(495) 980-12-10 www.logobook.ru
   В Контакте     В Контакте Мед  Мобильная версия